Skip to main content

Structure, Biosynthesis, and Function of Teichoic Acids and Related Cell Wall Glycopolymers in the Gram-positive Cell Envelope

  • Chapter
  • First Online:
Prokaryotic Cell Wall Compounds

Abstract

The incorporation of characteristic carbohydrate-based polymers into the cell wall is a general trait of most Gram-positive bacteria. These cell wall glycopolymers (CWGs) are attached to the membrane or the peptidoglycan and enclose, for example, the teichoic acids, which belong to the most prevalent types of CWG. The structure, function, and biosynthesis of CWGs are only superficially understood. CWG composition and structure is highly variable and often strain- and species-specific. Recent studies have yielded a more precise picture of the biosynthetic pathway for the wall teichoic acid (WTA) polymers, which are covalently anchored in the cell wall, and the lipoteichoic acid (LTA) polymers, which are attached to the cell membrane of Bacillus subtilis and Staphylococcus aureus. Some Gram-positive bacteria have other CWGs, aside from WTA and LTA, such as polyanionic teichuronic acids or uncharged lipoglycans. CWGs are important in bacterial physiology and various potential functions such as the control of autolytic enzymes, regulation of divalent cations, attachment of surface proteins, or protection against antibacterial molecules have been described. For those bacteria that colonize or infect the host organism, certain CWGs have been implicated in the adherence to host cells and the activation of the immune responses, for example through Toll-like receptors (TLRs). Additionally, CWGs are important targets for vaccines, antimicrobials and diagnostics. Thus CWGs represent an important field for scientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43:1–14

    CAS  PubMed  Google Scholar 

  • Anderson RG, Hussey H, Baddiley J (1972) The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. Biochem J 127:11–25

    CAS  PubMed  Google Scholar 

  • Araki Y, Ito E (1989) Linkage units in cell walls of Gram-positive bacteria. Crit Rev Microbiol 17:121–135

    CAS  PubMed  Google Scholar 

  • Armstrong JJ, Baddiley J, Buchanan JG, Davision AL, Kelemen MV, Neuhaus FC (1959) Composition of teichoic acids from a number of bacterial walls. Nature 184:247–248

    CAS  PubMed  Google Scholar 

  • Baddiley J (1989) Bacterial cell walls and membranes. Discovery of the teichoic acids. Bioessays 10:207–210

    CAS  PubMed  Google Scholar 

  • Bera A, Biswas R, Herbert S, Kulauzovic E, Weidenmaier C, Peschel A, Gotz F (2007) Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J Bacteriol 189:280–283

    CAS  PubMed  Google Scholar 

  • Bergmann S, Hammerschmidt S (2006) Versatility of pneumococcal surface proteins. Microbiology 152:295–303

    CAS  PubMed  Google Scholar 

  • Bhavsar AP, Brown ED (2006) Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol Microbiol 60:1077–1090

    CAS  PubMed  Google Scholar 

  • Bierbaum G, Sahl HG (1987) Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol 169:5452–5458

    CAS  PubMed  Google Scholar 

  • Bracha R, Chang M, Fiedler F, Glaser L (1978) Biosynthesis of teichoic acids. Methods Enzymol 50:387–40

    CAS  PubMed  Google Scholar 

  • Brennan PJ (2003) Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinburgh) 83:91–97

    CAS  Google Scholar 

  • Briken V, Porcelli SA, Besra GS, Kremer L (2004) Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol Microbiol 53:391–403

    CAS  PubMed  Google Scholar 

  • Brooks D, Mays LL, Hatefi Y, Young FE (1971) Glucosylation of teichoic acid: solubilization and partial characterization of the uridine diphosphoglucose:polyglycerolteichoic acid glucosyl transferase from membranes of Bacillus subtilis. J Bacteriol 107:223–229

    CAS  PubMed  Google Scholar 

  • Brown S, Zhang YH, Walker S (2008) A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chem Biol 15:12–21

    CAS  PubMed  Google Scholar 

  • Chavakis T, Hussain M, Kanse SM, Peters G, Bretzel RG, Flock JI, Herrmann M, Preissner KT (2002) Staphylococcus aureus extracellular adherence protein serves as anti inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 8:687–693

    CAS  PubMed  Google Scholar 

  • Choudhury B, Leoff C, Saile E, Wilkins P, Quinn CP, Kannenberg EL, Carlson RW (2006) The structure of the major cell wall polysaccharide of Bacillus anthracis is species specific. J Biol Chem 281:27932–27941

    CAS  PubMed  Google Scholar 

  • D'Elia MA, Millar KE, Beveridge TJ, Brown ED (2006) Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J Bacteriol 188:8313–8316

    PubMed  Google Scholar 

  • Debabov DV, Kiriukhin MY, Neuhaus FC (2000) Biosynthesis of lipoteichoic acid in Lactobacillus rhamnosus: role of DltD in D-alanylation. J Bacteriol 182:2855–2864

    CAS  PubMed  Google Scholar 

  • Deininger S, Stadelmaier A, von Aulock S, Morath S, Schmidt RR, Hartung T (2003) Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J Immunol 170:4134–4138

    CAS  PubMed  Google Scholar 

  • Delmas C, Gilleron M, Brando T, Vercellone A, Gheorghui M, Riviere M, Puzo G (1997) Comparative structural study of the mannosylated-lipoarabinomannans from Mycobacterium bovis BCG vaccine strains: characterization and localization of succinates. Glycobiology 7:811–817

    CAS  PubMed  Google Scholar 

  • Doran KS, Engelson EJ, Khosravi AMH, Fedtke I, Equils O, Michelsen KS, Arditi M, Peschel A, Nizet V (2005) Group B Streptococcus blood-brain barrier invasion depends upon proper cell surface anchoring of lipoteichoic acid. J Clin Invest 115:2499–2507

    CAS  PubMed  Google Scholar 

  • Draing C, Pfitzenmaier M, Zummo S, Mancuso G, Geyer A, Hartung T, von Aulock S (2006) Comparison of lipoteichoic acid from different serotypes of Streptococcus pneumoniae. J Biol Chem 281:33849–33859

    CAS  PubMed  Google Scholar 

  • Endl J, Seidl HP, Fiedler F, Schleifer KH (1983) Chemical composition and structure of the cell wall teichoic acids of staphylococci. Arch Microbiol 135:215–223

    CAS  PubMed  Google Scholar 

  • Endo Y, Matsushita M, Fujita T (2007) Role of ficolin in innate immunity and its molecular basis. Immunobiology 212:371–379

    CAS  PubMed  Google Scholar 

  • Escaich S, Moreau F, Vongsouthi VSC, Malacain E, Prouvensier L, Gerusz V, Denis M, Saccomani M, Oxoby M (2007) Discovery of new Gram-positive antivirulence drugs: the first antivirulence molecule active in vivo. ICAAC Conference 2007. F2-958

    Google Scholar 

  • Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J (2006) Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun 74:4164–4171

    CAS  PubMed  Google Scholar 

  • Fedtke I, Mader D, Kohler T, Moll H, Nicholson G, Biswas R, Henseler K, Gotz F, Zahringer U, Peschel A (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65:1078–1091

    CAS  PubMed  Google Scholar 

  • Ferguson JS, Voelker DR, McCormack FX, Schlesinger LS (1999) Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J Immunol 163:312–321

    CAS  PubMed  Google Scholar 

  • Fischer W (1988) Physiology of lipoteichoic acids in bacteria. Adv Microbiol Physiol 29:233–302

    CAS  Google Scholar 

  • Fischer W (1994) Lipoteichoic acids and lipoglycans. In: Ghuysen J-M, Hakenbeck R (eds) Bacterial cell wall. Elsevier Science B.V, Amsterdam, The Netherlands, pp 199–215

    Google Scholar 

  • Fischer W (2000) Phosphocholine of pneumococcal teichoic acids: role in bacterial physiology and pneumococcal infection. Res Microbiol 151:421–427

    CAS  PubMed  Google Scholar 

  • Fischer W, Behr T, Hartmann R, Peter-Katalinic J, Egge H (1993) Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoid acid (C polysaccharide). Eur J Biochem 215:851–857

    CAS  PubMed  Google Scholar 

  • Formstone A, Carballido-Lopez R, Noirot P, Errington J, Scheffers DJ (2008) Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. J Bacteriol 190:1812–1821

    CAS  PubMed  Google Scholar 

  • Foster TJ, Hook M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488

    CAS  PubMed  Google Scholar 

  • Freymond PP, Lazarevic V, Soldo B, Karamata D (2006) Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of Bacillus subtilis 168: its biosynthetic pathway and mode of attachment to peptidoglycan. Microbiology 152:1709–1718

    CAS  PubMed  Google Scholar 

  • Ginsberg C, Zhang YH, Yuan Y, Walker S (2006) In vitro reconstitution of two essential steps in wall teichoic acid biosynthesis. ACS Chem Biol 1:25–28

    CAS  PubMed  Google Scholar 

  • Giudicelli S, Tomasz A (1984) Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J Bacteriol 158:1188–1190

    CAS  PubMed  Google Scholar 

  • Glaser L, Lindsay B (1974) The synthesis of lipoteichoic acid carrier. Biochem Biophys Res Commun 59:1131–1136

    CAS  PubMed  Google Scholar 

  • Greenberg JW, Fischer W, Joiner KA (1996) Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun 64:3318–3325

    CAS  PubMed  Google Scholar 

  • Gross M, Cramton S, Götz F, Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3426

    CAS  PubMed  Google Scholar 

  • Grundling A, Schneewind O (2007a) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci USA 104:8478–8483

    PubMed  Google Scholar 

  • Grundling A, Schneewind O (2007b) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol 189(6):2521–30

    CAS  PubMed  Google Scholar 

  • Han SH, Kim JH, Martin M, Michalek SM, Nahm MH (2003) Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect Immun 71:5541–5548

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Tawaratsumida K, Kariya H, Kiyohara A, Suda Y, Krikae F, Kirikae T, Gotz F (2006) Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J Immunol 177:3162–3169

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Furuyashiki M, Kaseya R, Fukada Y, Akimaru M, Aoyama K, Okuno T, Tamura T, Kirikae T, Kirikae F, Eiraku N, Morioka H, Fujimoto Y, Fukase K, Takashige K, Moriya Y, Kusumoto S, Suda Y (2007) Evidence of immunostimulating lipoprotein existing in the natural lipoteichoic acid fraction. Infect Immun 75:1926–1932

    CAS  PubMed  Google Scholar 

  • Heaton MP, Neuhaus FC (1992) Biosynthesis of D-alanyl-lipoteichoc acid: cloning, nucleotide sequence, and expression of the Lactobacillus casei gene for the D-alanine-activating enzyme. J Bacteriol 174:4707–4717

    CAS  PubMed  Google Scholar 

  • Henneke P, Morath S, Uematsu S, Weichert S, Pfitzenmaier M, Takeuchi O, Muller A, Poyart C, Akira S, Berner R, Teti G, Geyer A, Hartung T, Trieu-Cuot P, Kasper DL, Golenbock DT (2005) Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol 174:6449–6455

    CAS  PubMed  Google Scholar 

  • Heptinstall S, Archibald AR, Baddiley J (1970) Teichoic acids and membrane function in bacteria. Nature 225:519–521

    CAS  PubMed  Google Scholar 

  • Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Gotz F (2007) Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 3:981–994

    CAS  Google Scholar 

  • Hermann C, Spreitzer I, Schroder NW, Morath S, Lehner MD, Fischer W, Schutt C, Schumann RR, Hartung T (2002) Cytokine induction by purified lipoteichoic acids from various bacterial species – role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN-gamma release. Eur J Immunol 32:541–551

    CAS  PubMed  Google Scholar 

  • Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S, Crozat K, Sovath S, Shamel L, Hartung T, Zahringer U, Beutler B (2005) CD36 is a sensor of diacylglycerides. Nature 433:523–527

    CAS  PubMed  Google Scholar 

  • Jiang Y, Oliver P, Davies KE, Platt N (2006) Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J Biol Chem 281:11834–11845

    CAS  PubMed  Google Scholar 

  • Jorasch P, Wolter FP, Zähringer U, Heinz E (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1, 2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol 29:419–30

    CAS  PubMed  Google Scholar 

  • Jorasch P, Warnecke DC, Lindner B, Zähringer U, Heinz E (2000) Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols. Eur J Biochem 267:3770–3783

    CAS  PubMed  Google Scholar 

  • Kalka-Moll WM, Tzianabos AO, Bryant PW, Niemeyer M, Ploegh HL, Kasper DL (2002) Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions. J Immunol 169:6149–6153

    CAS  PubMed  Google Scholar 

  • Kiriukhin MY, Debabov DV, Shinabarger DL, Neuhaus FC (2001) Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J Bacteriol 183:3506–3514

    CAS  PubMed  Google Scholar 

  • Koch HU, Haas R, Fischer W (1984) The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus. Eur J Biochem 138:357–363

    CAS  PubMed  Google Scholar 

  • Koch HU, Doker R, Fischer W (1985) Maintenance of D-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus. J Bacteriol 164:1211–1217

    CAS  PubMed  Google Scholar 

  • Kohler T, Weidenmaier C, Peschel A (2009a) Wall teichoic acids protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J Bacteriol 191(13):4482–4484

    CAS  PubMed  Google Scholar 

  • Kohler T, Xia G, Kulausovic E, Peschel A (2009b) Teichoic acids, lipoteichoic acids, and related cell wall glycopolymers of Gram-positive bacteria. In: Moran A (ed) Microbial Glycobiology: structures, relevance and applications. Elsevier, Amsterdam, pp 75–91

    Google Scholar 

  • Koprivnjak T, Weidenmaier C, Peschel A, Weiss JP (2008) Wall teichoic acid deficiency in Staphylococcus aureus confers selective resistance to mammalian group IIA phospholipase A(2) and human beta-defensin 3. Infect Immun 76:2169–2176

    CAS  PubMed  Google Scholar 

  • Kraus D, Herbert S, Kristian SA, Khosravi A, Nizet V, Gotz F, Peschel A (2008) The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol 8:85

    PubMed  Google Scholar 

  • Kristian SA, Lauth X, Nizet V, Götz F, Neumeister B, Peschel A, Landmann R (2003) Alanylation of teichoic acids protects Staphylococcus aureus against Toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. J Infect Dis 188:414–423

    CAS  PubMed  Google Scholar 

  • Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizet V (2005) D-alanylation of teichoic acid promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187:6719–6725

    CAS  PubMed  Google Scholar 

  • Kumar A, Ray P, Kanwar M, Sharma M, Varma S (2005) A comparative analysis of antibody repertoire against Staphylococcus aureus antigens in patients with deep-seated versus superficial staphylococcal infections. Int J Med Sci 2:129–136

    CAS  PubMed  Google Scholar 

  • Lancefield RC, Freimer EH (1966) Type-specific polysaccharide antigens of group B streptococci. J Hyg (London) 64:191–203

    CAS  Google Scholar 

  • Lazarevic V, Karamata D (1995) The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol Microbiol 16:345–355

    CAS  PubMed  Google Scholar 

  • Leoff C, Saile E, Sue D, Wilkins P, Quinn CP, Carlson RW, Kannenberg EL (2007) Cell wall carbohydrate compositions of strains from the B. cereus group of species correlate with phylogenetic relatedness. J Bacteriol 190(1):112–121

    PubMed  Google Scholar 

  • Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M (2007) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad Sci USA 104:9469–9474

    CAS  PubMed  Google Scholar 

  • Lopez R, Garcia E, Garcia P, Ronda C, Tomasz A (1982) Choline-containing bacteriophage receptors in Streptococcus pneumoniae. J Bacteriol 151:1581–1590

    CAS  PubMed  Google Scholar 

  • Lynch NJ, Roscher S, Hartung T, Morath S, Matsushita M, Maennel DN, Kuraya M, Fujita T, Schwaeble WJ (2004) L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. J Immunol 172:1198–1202

    CAS  PubMed  Google Scholar 

  • May JJ, Finking R, Wiegeshoff F, Weber TT, Bandur N, Koert U, Marahiel MA (2005) Inhibition of the D-alanine: D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium's susceptibility to antibiotics that target the cell wall. FEBS J 272:993–3003

    Google Scholar 

  • Mazmanian SK, Kasper DL (2006) The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 6:849–858

    CAS  PubMed  Google Scholar 

  • McLoughlin RM, Solinga RM, Rich J, Zaleski KJ, Cocchiaro JL, Risley A, Tzianabos AO, Lee JC (2006) CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc Natl Acad Sci USA 103:10408–10413

    CAS  PubMed  Google Scholar 

  • Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19:4473–4484

    CAS  PubMed  Google Scholar 

  • Mikusova K, Slayden RA, Besra GS, Brennan PJ (1995) Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents Chemother 39:2484–2489

    CAS  PubMed  Google Scholar 

  • Mongodin E, Bajolet O, Cutrona J, Bonnet N, Dupuit F, Puchelle E, de Bentzmann S (2002) Fibronectin-binding proteins of Staphylococcus aureus are involved in adherence to human airway epithelium. Infect Immun 70:620–630

    CAS  PubMed  Google Scholar 

  • Nathenson SG, Ishimoto N, Anderson JS, Strominger JL (1966) Enzymatic synthesis and immunochemistry of alpha- and beta-N-acetylglucosaminylribitol linkages in teichoic acids from several strains of Staphylococcus aureus. J Biol Chem 241:651–658

    CAS  PubMed  Google Scholar 

  • Naumova IB, Shashkov AS (1997) Anionic polymers in cell walls of Gram-positive bacteria. Biochemistry (Moscow) 62:809–840

    CAS  Google Scholar 

  • Navarre WW, Schneewind O (1999) Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229

    CAS  PubMed  Google Scholar 

  • Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723

    CAS  PubMed  Google Scholar 

  • Neuhaus FC, Heaton MP, Debabov DV, Zhang Q (1996) The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei. Microb Drug Resist 2:77–84

    CAS  PubMed  Google Scholar 

  • Oku Y, Kurokawa K, Matuso M, Yamada S, Lee BL, Sekimizu K (2008) Pleiotropic roles of poly-glycerolphosphate synthase of lipoteichoic acid in the growth of Staphylococcus aureus cells. J Bacteriol 191:141–151

    PubMed  Google Scholar 

  • Park JT, Shaw DR, Chatterjee AN, Mirelman D, Wu T (1974) Mutants of staphylococci with altered cell walls. Ann NY Acad Sci 236:54–62

    CAS  PubMed  Google Scholar 

  • Park YS, Sweitzer TD, Dixon JE, Kent C (1993) Expression, purification, and characterization of CTP: glycerol-3-phosphate cytidylyltransferase from Bacillus subtilis. J Biol Chem 268:16648–16654

    CAS  PubMed  Google Scholar 

  • Pereira MP, Brown ED (2004) Bifunctional catalysis by CDP-ribitol synthase: convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae and Staphylococcus aureus. Biochemistry 43:11802–11812

    CAS  PubMed  Google Scholar 

  • Pereira MP, Delia MA, Troczynska J, Brown ED (2008) Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. J Bacteriol 190(16):5642–9

    CAS  PubMed  Google Scholar 

  • Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536

    CAS  PubMed  Google Scholar 

  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins and other antimicrobial peptides. J Biol Chem 274:8405–8410

    CAS  PubMed  Google Scholar 

  • Peschel A, Vuong C, Otto M, Götz F (2000) The d-alanine residues of Staphylococcusaureus teichoic acids alter the susceptibility to vancomycin and the activity of autolysins. Antimicrob Agents Chemother 44:2845–2847

    CAS  PubMed  Google Scholar 

  • Polotsky VY, Fischer W, Ezekowitz AB, Joiner KA (1996) Interactions of human mannose-binding protein with lipoteichoic acids. Infect Immun 64:380–383

    CAS  PubMed  Google Scholar 

  • Polotsky VY, Belisle JT, Mikusova K, Ezekowitz RA, Joiner KA (1997) Interaction of human mannose-binding protein with Mycobacterium avium. J Infect Dis 175:1159–1168

    CAS  PubMed  Google Scholar 

  • Pooley HM, Karamata D (1994) Teichoic acid synthesis in Bacillus subtilis: genetic organization and biological roles. In: Ghuysen J-M, Hakenbeck R (eds) Bacterial Cell Wall. Elsevier Science B.V, Amsterdam, The Netherlands, pp 187–197

    Google Scholar 

  • Potekhina NV, Tul'skaya EM, Naumova IB, Shashkov AS, Evtushenko LI (1993) Erythritolteichoic acid in the cell wall of Glycomyces tenuis VKM Ac-1250. Eur J Biochem 218:371–375

    CAS  PubMed  Google Scholar 

  • Powell DA, Duckworth M, Baddiley J (1975) A membrane-associated lipomannan in micrococci. Biochem J 151:387–397

    CAS  PubMed  Google Scholar 

  • Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, Porcelli SA, Brenner MB, Modlin RL, Kronenberg M (1997) The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6:187–197

    CAS  PubMed  Google Scholar 

  • Qian Z, Yin Y, Zhang Y, Lu L, Li Y, Jiang Y (2006) Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus: genes, genomic organization and gene duplication. BMC Genomics 7:74

    PubMed  Google Scholar 

  • Sadovskaya I, Vinogradov E, Li J, Jabbouri S (2004) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr Res 339:1467–1473

    CAS  PubMed  Google Scholar 

  • Schäffer C, Messner P (2005) The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151:643–651

    PubMed  Google Scholar 

  • Shashkov AS, Streshinskaya GM, Senchenkova SN, Kozlova YI, Alferova IV, Terekhova LP, Evtushenko LI (2006) Cell wall teichoic acids of streptomycetes of the phenetic cluster ‘Streptomyces fulvissimus’. Carbohydr Res 341:796–802

    CAS  PubMed  Google Scholar 

  • Shimaoka T, Kume N, Minami M, Hayashida K, Sawamura T, Kita T, Yonehara S (2001) LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J Immunol 166:5108–5114

    CAS  PubMed  Google Scholar 

  • Sidobre S, Nigou J, Puzo G, Riviere M (2000) Lipoglycans are putative ligands for the human pulmonary surfactant protein A attachment to mycobacteria. Critical role of the lipids for lectin-carbohydrate recognition. J Biol Chem 275:2415–2422

    CAS  PubMed  Google Scholar 

  • Soldo B, Lazarevic V, Pagni M, Karamata D (1999) Teichuronic acid operon of Bacillus subtilis 168. Mol Microbiol 31:795–805

    CAS  PubMed  Google Scholar 

  • Soldo B, Lazarevic V, Karamata D (2002a) tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148:2079–2087

    CAS  PubMed  Google Scholar 

  • Soldo B, Lazarevic V, Pooley HM, Karamata D (2002b) Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH) encodes the UDP-N-acetylglucosamine 2-epimerase. J Bacteriol 184:4316–4320

    CAS  PubMed  Google Scholar 

  • Sugawara I, Yamada H, Li C, Mizuno S, Takeuchi O, Akira S (2003) Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol Immunol 47:327–336

    CAS  PubMed  Google Scholar 

  • Sutcliffe I (2005) Lipoarabinomannans – structurally diverse and functionally enigmatic macroamphiphiles of mycobacteria and related actinomycetes. Tuberculosis (Edinburgh) 85:205–206

    Google Scholar 

  • Sutcliffe IC, Black GW, Harrington DJ (2008) Bioinformatic insights into the biosynthesis of the Group B carbohydrate in Streptococcus agalactiae. Microbiology 154:1354–1363

    CAS  PubMed  Google Scholar 

  • Takahashi M, Mori S, Shigeta S, Fujita T (2007) Role of MBL-associated serine protease (MASP) on activation of the lectin complement pathway. Adv Exp Med Biol 598:93–104

    PubMed  Google Scholar 

  • Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101

    CAS  PubMed  Google Scholar 

  • Tapping RI, Tobias PS (2003) Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J Endotoxin Res 9:264–268

    CAS  PubMed  Google Scholar 

  • Theilacker C, Krueger WA, Kropec A, Huebner J (2004) Rationale for the development of immunotherapy regimens against enterococcal infections. Vaccine 22(Suppl 1):S31–S38

    CAS  PubMed  Google Scholar 

  • Theilacker C, Kaczynski Z, Kropec A, Fabretti F, Sange T, Holst O, Huebner J (2006) Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect Immun 74:5703–5712

    CAS  PubMed  Google Scholar 

  • Tzianabos AO, Wang JY, Lee JC (2001) Structural rationale for the modulation of abscess formation by Staphylococcus aureus capsular polysaccharides. Proc Natl Acad Sci USA 98:9365–9370

    CAS  PubMed  Google Scholar 

  • van de Wetering JK, van Eijk M, van Golde LM, Hartung T, van Strijp JA, Batenburg JJ (2001) Characteristics of surfactant protein A and D binding to lipoteichoic acid and peptidoglycan, 2 major cell wall components of Gram-positive bacteria. J Infect Dis 184:1143–1151

    PubMed  Google Scholar 

  • Verbrugh HA, Peters R, Rozenberg-Arska M, Peterson PK, Verhoef J (1981) Antibodies to cell wall peptidoglycan of Staphylococcus aureus in patients with serious staphylococcal infections. J Infect Dis 144:1–9

    CAS  PubMed  Google Scholar 

  • Verhoef J, Musher DM, Spika JS, Verbrugh HA, Jasper FC (1983) The effect of staphylococcal peptidoglycan on polymorphonuclear leukocytes in vitro and in vivo. Scand J Infect Dis Suppl 41:79–86

    CAS  PubMed  Google Scholar 

  • Vinogradov E, Sadovskaya I, Li J, Jabbouri S (2006) Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. Carbohydr Res 341:738–743

    CAS  PubMed  Google Scholar 

  • Ward JB (1981) Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol Rev 45:211–243

    CAS  PubMed  Google Scholar 

  • Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287

    CAS  PubMed  Google Scholar 

  • Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturyia T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245

    CAS  PubMed  Google Scholar 

  • Weidenmaier C, Peschel A, Xiong YQ, Kristian SA, Dietz K, Yeaman MR, Bayer AS (2005a) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191:1771–1777

    CAS  PubMed  Google Scholar 

  • Weidenmaier C, Peschel A, Kempf VA, Lucindo N, Yeaman MR, Bayer AS (2005b) DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun 73:8033–8038

    CAS  PubMed  Google Scholar 

  • Weidenmaier C, Kokai-Kun JF, Kulauzovic E, Kohler T, Thumm G, Stoll H, Gotz F, Peschel A (2008) Differential roles of sortase-anchored surface proteins and wall teichoic acid in Staphylococcus aureus nasal colonization. Int J Med Microbiol 298(5–6):505–13

    CAS  PubMed  Google Scholar 

  • Weisman LE (2007) Antibody for the prevention of neonatal nosocomial staphylococcal infection: a review of the literature. Arch Pediatr 14(Suppl 1):S31–S34

    PubMed  Google Scholar 

  • Wendlinger G, Loessner MJ, Scherer S (1996) Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142:985–992

    CAS  PubMed  Google Scholar 

  • Xia G, Peschel A (2008) Toward the pathway of S. aureus WTA biosynthesis. Chem Biol 15:95–96

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our research is supported by grants from from the German Research Foundation (TR34, FOR449, GRK685, SFB685, SFB76, SPP1130), the European Union (LSHM-CT-2004-512093), the German Ministry of Education and Research (NGFN2, SkinStaph) and the IZKF program of the Medical Faculty, University of Tübingen, to A.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Peschel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rautenberg, M., Kohler, T., Xia, G., Kulauzovic, E., Peschel, A. (2010). Structure, Biosynthesis, and Function of Teichoic Acids and Related Cell Wall Glycopolymers in the Gram-positive Cell Envelope. In: König, H., Claus, H., Varma, A. (eds) Prokaryotic Cell Wall Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05062-6_5

Download citation

Publish with us

Policies and ethics