Skip to main content

Real-Time Object-Based Video Segmentation Using Colour Segmentation and Connected Component Labeling

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 5857)

Abstract

In this paper, we described two-scan connected component labeling (CCL) approach on a real-time colour video image segmentation. CCL approach is an act of region labeling and could provides opportunity to find feature of object and establish boundaries of objects which are the common properties needed by many object-based video segmentation applications. We tested the proposed technique in two experimental studies that simulates real-time object-based video segmentation. Our experiments results shown that the proposed technique could perform region labeling in a fast manner. Another advantage of the proposed technique is that it does not provide extra storage to store same label equivalence. This property gives advantage to avoid label equivalence redundancies that always happen in the CCL approach.

Keywords

  • Connected component labeling (CCL)
  • real-time colour video image
  • region labeling
  • object-based video segmentation application

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-05036-7_12
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-05036-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenfeld, A., Pfaltz, J.L.: Sequential Operations in Digital Picture Processing. Journal of the Association for Computing Machinery 13(4), 471–494 (1966)

    MATH  Google Scholar 

  2. Yasuaki, I., Koji, N.: Component Labeling for k-Concave Binary Images Using an FPGA. In: IEEE International Symposiun on Parallel and Distributed Processing, IPDPS 2008, Miami, FL, April 14-18, 2008, pp. 1–8 (2008)

    Google Scholar 

  3. Jung-Me, P., Carl, G.L., Hui-Chuan, C.: Fast Connected Component Labeling Algorithm Using A Divide and Conquer Technique. In: CATA 2000 Conference on Computers and Their Applications (December 2000), pp. 373–376 (2000)

    Google Scholar 

  4. Gabbur, P., Hua, H., Barnard, K.: A fast connected components labeling algorithm and its application to real-time pupil detection (In Press)

    Google Scholar 

  5. Lifeng, H., Yuyan, C., Suzuki, K.: A Run-Based Two-Scan Labeling Algorithm. IEEE Transactions on Image Processing 17(5), 749–756 (2008)

    CrossRef  MathSciNet  Google Scholar 

  6. Bernat, G., Burns, A., Liamosi, A.: Weakly Hard Real-Time Systems. IEEE Transactions on Computers 50(4), 308–321 (2001)

    CrossRef  Google Scholar 

  7. Di Stefano, L., Bulgarelli, A.: A Simple and Efficient Connected Components Labeling Algorithm. In: Proceedings International Conference on Image Analysis and Processing, 1999, September 27-29, pp. 322–327 (1999)

    Google Scholar 

  8. Ronald, L.: A New Three-Dimensional Connected Components Algorithm. Journal of the Computer Vision, Graphics, and Image Processing 23(2), 207–217 (1983)

    CrossRef  Google Scholar 

  9. Ranganathan, N., Mehrotra, R., Subramanian, S.: A high speed systolic architecture for labeling connected components in an image. IEEE Transactions on Systems, Man and Cybernetics 25(3), 415–423 (1995)

    CrossRef  Google Scholar 

  10. Haralick, R.M.: Some neighborhood function. In: Onoe, M., Preston, K., Rosenfeld, A. (eds.) Real Time/Parallel Computing Image Analysis. Plenum Press, New York (1981)

    Google Scholar 

  11. Lumia, R., Shapiro, L., Zuniga, O.: A new connected components algorithms for virtual memory computers. Journal of the Computer Vision, Graphics and Image Processing 22, 287–300 (1983)

    CrossRef  Google Scholar 

  12. Schwartz, J.T., Shahrir, M., Siegel, A.: An efficient algorithm for finding connected components in a binary image. Technical Report 156, Courant Institute, NYU (1985)

    Google Scholar 

  13. Cypher, R., Sanz, J.L.C., Snyder, L.: An EREW PRAM algorithm for image component labeling. IEEE Transactions on Pattern Analysis Machine Intelligence 11(3), 258–262 (1989)

    CrossRef  Google Scholar 

  14. Ercan, M.F., Fung, Y.-F.: Connected component labeling on a one dimensional DSP array. In: Proceedings of the IEEE Region 10 Conference TENCON 1999, September 15-17, 1999, vol. 2 (2), pp. 1299–1302 (1999)

    Google Scholar 

  15. Samet, H., Tamminen, M.: Efficient component labeling of images of arbitrary dimension represented by linear bintrees. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(4), 579–586 (1988)

    CrossRef  Google Scholar 

  16. Samet, H.: Connected component labeling using quadtrees. Journal of the ACM 28(3), 487–501 (1981)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Dillencourt, M.B., Samet, H., Tamminen, M.: A general approach to connected-component labeling for arbitrary image representations. Journal of the ACM 39(2), 253–280 (1992)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Chang, F., Chun-Jen, C.: A Component-Labeling Algorithm Using Contour Tracing Technique. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003), August 3-6, 2003, pp. 741–745 (2003)

    Google Scholar 

  19. Chang, F., Chun-Jen, C.: A Linear-Time Component-Labeling Algorithm Using Contour Tracing Technique. Journal of Computer Vision and Image Understanding 93(2), 206–220 (2004)

    CrossRef  Google Scholar 

  20. Yapa, R.D., Koichi, H.: A Connected Component Labeling Algorithm for Grayscale Images and Application of the Algorithm on Mammograms. In: Proceedings of the 2007 ACM symposium on Applied computing, Seoul, Korea, March 11-15, 2007, pp. 146–152 (2007)

    Google Scholar 

  21. Ng, G.W., Ma, S.-Y., Ritchings, R.T.: An Augmented Reality Training Environment for Computer Accessory Maintenance. In: Proceedings of CE 2004: The 11th ISPE International Conference on Concurrent Engineering: Research and Applications. Tsinghua University Press and Springer Verlag, Beijing (2004)

    Google Scholar 

  22. Jau, L.U., Teh, C.S., Ng, G.W.: A comparison of RGB and HSI colour segmentation in real - time video images: A preliminary study on road sign detection. In: Proceedings International Symposium on Information Technology 2008, August 26-29, 2008, vol. 4, pp. 2576–2581. Kuala Lumpur Convention Centre, Malaysia (2008)

    Google Scholar 

  23. Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Journal of Pattern Recognition 26(1), 167–174 (1993)

    CrossRef  MathSciNet  Google Scholar 

  24. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision, 2nd edn. Brooks/Cole Publishing Company, USA (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jau, U.L., Teh, C.S. (2009). Real-Time Object-Based Video Segmentation Using Colour Segmentation and Connected Component Labeling. In: Badioze Zaman, H., Robinson, P., Petrou, M., Olivier, P., Schröder, H., Shih, T.K. (eds) Visual Informatics: Bridging Research and Practice. IVIC 2009. Lecture Notes in Computer Science, vol 5857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05036-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05036-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05035-0

  • Online ISBN: 978-3-642-05036-7

  • eBook Packages: Computer ScienceComputer Science (R0)