Skip to main content

Testing Timed Finite State Machines with Guaranteed Fault Coverage

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNCCN,volume 5826)

Abstract

A method is presented for deriving test suites with the guaranteed fault coverage for deterministic possibly partial Timed Finite State Machines (TFSMs). TFSMs have integer boundaries for time guards and the time reset operation at every transition; for TFSM implementations the upper bound on the number of states is known as well as the largest finite boundary and the smallest duration of time guards. We consider two fault models and present corresponding techniques for deriving complete test suites. In the first fault model inputs can be applied at integer time instances while in the second fault model time instances can be rational. The derivation method for integer time instances is extended to the case when the number of states of an implementation under test can be larger than the number of states of the given specification.

Keywords

  • Test Suite
  • Fault Model
  • Time Instance
  • Conformance Test
  • Implementation Under Test

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alur, R., Dill, D.L.: A Theory of Timed automata. Theoretical Computer Science 126(2), 183–235 (1994)

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Bochmann, G.v., Petrenko, A.: Protocol Testing: Review of Methods and Relevance for Software Testing. In: International Symposium on Software Testing and Analysis, Seattle, pp. 109–123 (1994)

    Google Scholar 

  3. Chow, T.S.: Test Design Modeled by Finite-state Machines. IEEE TSE 4(3), 178–187 (1978)

    MATH  Google Scholar 

  4. Dorofeeva, R., El-Fakih, K., Yevtushenko, N.: An Improved Conformance Testing Method. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 204–218. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  5. En-Nouaary, A., Dssouli, R., Khendek, F.: Timed Wp-Method: Testing Real-Time Systems. IEEE TSE 28(11), 1023–1038 (2002)

    Google Scholar 

  6. Fujiwara, S., Bochmann, G.v., Khendek, F., Amalou, M., Ghedamsi, A.: Test Selection Based on Finite State Models. IEEE Trans. SE 17(6), 591–603 (1991)

    CrossRef  Google Scholar 

  7. Gromov, M., El-Fakih, K., Shabaldina, N., Yevtushenko, N.: Distinguishing Non-deterministic Timed Finite State Machines. In: 11th Formal Methods for Open Object-Based Distributed Systems and 29th Formal Techniques for Networked and Distributed Systems, FMOODS/FORTE. LNCS, vol. 5522, pp. 137–151. Springer, Heidelberg (2009)

    Google Scholar 

  8. Hierons, R.M., Merayo, M.G., Nunez: Testing from a Stochastic Timed System with a Fault Model. Journal of Logic and Algebraic Programming 72(8), 98–115 (2009)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Lee, D., Yannakakis, M.: Principles and Methods of Testing Finite State Machines-A Survey. Proc. of the IEEE 84(8), 1090–1123 (1996)

    CrossRef  Google Scholar 

  10. Merayo, M.G., Nunez, M., Rodriguez, I.: Formal Testing from Timed Finite State Machines. Computer Networks 52(2), 432–460 (2008)

    CrossRef  MATH  Google Scholar 

  11. Petrenko, A.: Checking Experiments with Protocol Machines. In: Proc. 4th Int. Workshop on Protocol Test Systems (IWPTS), pp. 83–94 (1991)

    Google Scholar 

  12. Petrenko, A., Yevtushenko, N.: Testing from Partial Deterministic FSM Specifications. IEEE Trans. Computers 54(9), 1154–1165 (2005)

    CrossRef  Google Scholar 

  13. Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A.: Nondeterministic State Machines in Protocol Conformance Testing. In: Proc. of the IFIP 6th IWPTS, France, pp. 363–378 (1993)

    Google Scholar 

  14. Springintveld, J., Vaandrager, F., D’Argenio, P.: Testing Timed Automata. Theoretical Computer Science 254(1-2), 225–257 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Vasilevskii, M.P.: Failure Diagnosis of Automata. translated from Kibernetika 4, 98–108 (1973)

    MathSciNet  Google Scholar 

  16. Yevtushenko, N., Petrenko, A.: Test derivation method for an arbitrary deterministic automaton. In: Automatic Control and Computer Science, vol. 5. Allerton Press Inc., USA (1990)

    Google Scholar 

  17. Yannakakis, M., Lee, D.: Testing Finite State Machines: Fault Detection. Journal of Computer and System Sciences 50, 209–227 (1995)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Cardell-Oliver, R., Glover, T.: A Practical and Complete Algorithm for Testing Real-Time Systems. Formal Techniques for Real-Time Fault Tolerant Systems (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

El-Fakih, K., Yevtushenko, N., Fouchal, H. (2009). Testing Timed Finite State Machines with Guaranteed Fault Coverage. In: Núñez, M., Baker, P., Merayo, M.G. (eds) Testing of Software and Communication Systems. FATES TestCom 2009 2009. Lecture Notes in Computer Science, vol 5826. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05031-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05031-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05030-5

  • Online ISBN: 978-3-642-05031-2

  • eBook Packages: Computer ScienceComputer Science (R0)