Skip to main content

Natural Cellulosic Substance Derived Nano-structured Materials

  • Chapter
Nanostructured Biomaterials

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1191 Accesses

Abstract

When versatile synthetic chemical processes meet natural biological assemblies, a promising shortcut for the design and fabrication of functional materials with tailored structures and properties are lit up. By precisely replicating natural substrates with guest matrices, artificial materials are endowed with the initial biological structures and morphologies. To achieve faithful inorganic/organic replicas of the natural species for the corresponding finest structural details and morphological hierarchies, one effective and practical strategy is to coat the morphologically sophisticated surfaces of the biological structures with ultrathin films accompanied by subsequent removal of the biotemplate. With this process, the morphological hierarchies of initial biological substances can be replicated faithfully from macroscopic down to nanometer scales. And it was successfully applied to natural cellulosic substances such as filter paper, cotton, and cloth to yield the related metal oxide replicas. The hierarchical structure and highly detailed morphologies of the cellulosic substances are precisely memorized in metal oxide films to give macroscopic fossils; and the organic substances are removed by subsequent calcination. The resultant fossils are hierarchical ceramic materials, in which the structures of the original template substance are faithfully inherited. The ceramics are composed of metal oxide nano-tubes, as precise hollow replicas of the template cellulose nanofibers. This approach has been employed to synthesize titania, zirconia, tin oxide, and ITO nanotubular materials. Hierarchical titania nanotube-gold nanoparticle hybrid and polypyrrole composite materials are also achieved with using filter paper as a scaffold. Also, the titania-coated cellulose fibers are employed as a substrate for protein immobilization, resulting in novel bioactive materials. Furthermore, by dissolving the cellulose template instead of calcination, this approach is extended to the design and preparation of bio-inspired polymeric nanotubular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15:101–114

    Article  CAS  Google Scholar 

  • Anderson MW, Holmes SM, Hanif N, Cundy CS (2000) Hierarchical pore structures through diatom zeolitization. Angew Chem Int Ed 39:2707–2710

    Article  CAS  Google Scholar 

  • Aoki Y, Huang J, Kunitake T (2006) Electro-conductive nanotubular sheet of indium tin oxide as fabricated from the cellulose template. J Mater Chem 16:292–297

    Article  CAS  Google Scholar 

  • Baik NS, Sakai G, Miura N, Yamazoe N (2000) Hydrothermally treated sol solution of tin oxide for thin-film gas sensor. Sens Actuat B 63:74–79

    Article  Google Scholar 

  • Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW III, Summers CJ, Liu M, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446:172–175

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  • Carlmark A, Malmström E (2002) Atom transfer radical polymerization from cellulose fibers at ambient temperature. J Am Chem Soc 124:900–901

    Article  CAS  Google Scholar 

  • Carswell ADW, O'Rear EA, Grady BP (2003) Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films. J Am Chem Soc 125: 14793–14800

    Article  CAS  Google Scholar 

  • Caruso RA (2004) Micrometer-to-nanometer replication of hierarchical structures by using a surface sol-gel process. Angew Chem Int Ed 43:2746–2748

    Article  CAS  Google Scholar 

  • Caruso RA, Antonietti M (2001) Sol—gel nanocoating: an approach to the preparation of structured materials. Chem Mater 13:3272–3282

    Article  CAS  Google Scholar 

  • Caruso RA, Schattka JH, Greiner A (2001) Titanium dioxide tubes from sol—gel coating of electrospun polymer fibers. Adv Mater 13:1577–1579

    Article  CAS  Google Scholar 

  • Chen Q, Zhou W, Du G, Peng L (2002) Trititanate nanotubes made via a single alkali treatment. Adv Mater 14:1208–1211

    Article  CAS  Google Scholar 

  • Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y, Kim W, Utz PJ, Dai H (2003) Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc Natl Acad Sci USA 100:4984–4989

    Article  CAS  Google Scholar 

  • Chia S, Urano J, Tamanoi F, Dunn B, Zink JI (2000) Patterned hexagonal arrays of living vells in sol-gel silica films. J Am Chem Soc 122:6488–6489

    Article  CAS  Google Scholar 

  • Cook G, Timms PL, Göltner-Spickermann C (2003) Exact replication of biological structures by chemical vapor deposition of silica. Angew Chem Int Ed 42:557–559

    Article  CAS  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  Google Scholar 

  • Davis SA, Burkett SL, Mendelson NH, Mann S (1997) Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature 385:420–423

    Article  CAS  Google Scholar 

  • Dong A, Wang Y, Tang Y, Ren N, Zhang Y, Yue Y, Gao Z (2002) Zeolitic tissue through wood cell templating. Adv Mater 14:926–929

    Article  CAS  Google Scholar 

  • Ekanayake EMIM, Preethichandra DMG, Kaneto K (2007) Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens Bioelectron 23:107–113

    Article  CAS  Google Scholar 

  • El-Zahab B, Jia H, Wang P (2004) Enabling multienzyme biocatalysis using nanoporous materials. Biotechnol Bioeng 87:178–183

    Article  CAS  Google Scholar 

  • Ercolessi F, Andreoni W, Tosatti E (1991) Melting of small gold particles: mechanism and size effects. Phys Rev Lett 66:911–914

    Article  CAS  Google Scholar 

  • Fullam S, Cottell D, Rensmo H, Fitzmaurice D (2000) Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv Mater 12:1430–1432

    Article  CAS  Google Scholar 

  • Gu Y, Huang J (2009) Fabrication of natural cellulose substance derived hierarchical polymeric materials. J Mater Chem 19:3764–3770

    Article  CAS  Google Scholar 

  • Hall SR, Bolger H, Mann S (2003) Morphosynthesis of complex inorganic forms using pollen grain templates. Chem Commun: 2784–2785

    Google Scholar 

  • Han R, Xing X, Wang Y, Long Y, Sun Y, Zhao Z, Mi H (2008) Separation/enrichment of active natural low content protein using protein imprinted polymer. J Chromatogr B 873:113–118

    Article  CAS  Google Scholar 

  • Hassani A, Dupuis A, Skorobogatiy M (2008) Porous polymer fibers for low-loss Terahertz guiding. Opt Express 16:6340–6351

    Article  Google Scholar 

  • Huang J, Ichinose I, Kunitake T (2002a) Replication of dendrimer monolayer as nanopores in titania ultrathin film. Chem Commun:2070–2071

    Google Scholar 

  • Huang J, Ichinose I, Kunitake T (2005a) Nanocoating of natural cellulose fibers with conjugated polymer: hierarchical polypyrrole composite materials. Chem Commun: 1717–1719

    Google Scholar 

  • Huang J, Ichinose I, Kunitake T (2006a) Biomolecular modification of hierarchical cellulose fibers through titania nanocoating. Angew Chem Int Ed 45:2883–2886

    Article  CAS  Google Scholar 

  • Huang J, Ichinose I, Kunitake T, Nakao A (2002b) Preparation of nanoporous titania films by surface sol-gel process accompanied by low-temperature oxygen plasma treatment. Langmuir 18:9048–9053

    Article  CAS  Google Scholar 

  • Huang J, Ichinose I, Kunitake T, Nakao A (2002c) Zirconia-titania nanofilm with composition gradient. Nano Lett 2:669–672

    Article  CAS  Google Scholar 

  • Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am ChemSoc 126:851–855

    Article  CAS  Google Scholar 

  • Huang J, Kunitake T (2003) Nano-precision replication of natural cellulosic substances by metal oxides. J Am Chem Soc 125:11834–11835

    Article  CAS  Google Scholar 

  • Huang J, Kunitake T, Onoue S (2004) A facile route to a highly stabilized hierarchical hybrid of titania nanotube and gold nanoparticle. Chem Commun, p 1008–1009

    Google Scholar 

  • Huang J, Matsunaga N, Shimanoe K, Yamazoe N, Kunitake T (2005b) Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing. Chem Mater 17: 3513–3518

    Article  CAS  Google Scholar 

  • Huang J, Wang X, Wang Z (2006b) Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett 6:2325–2331

    Article  CAS  Google Scholar 

  • Imai H, Iwaya Y, Shimizu K, Hirashima H (2000) Preparation of hollow fibers of tin oxide with and without antimony doping. Chem Lett 29:906–907

    Article  Google Scholar 

  • Kam NWS, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021–6026

    Article  CAS  Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163

    Article  CAS  Google Scholar 

  • Kemell M, Pore V, Ritala M, Leskelä M, Lindén M (2005) Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocata-lytic TiO2/cellulose composites. J Am Chem Soc 127:14178–14179

    Article  CAS  Google Scholar 

  • Kim Y (2003) Small structures fabricated using ash-forming biological materials as templates. Biomacromolecules 4:908–913

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kunitake T, Fujikawa S (2003) Nanocopying as a means of 3D nanofabrication: scope and prospects. Aust J Chem 56:1001–1003

    Article  CAS  Google Scholar 

  • Lakshmi BB, Dorhout PK, Martin CR (1997) Sol—gel template synthesis of semiconductor nanostructures. Chem Mater 9:857–862

    Article  CAS  Google Scholar 

  • Li Y, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ (2003) Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299:2045–2047

    Article  CAS  Google Scholar 

  • Lin X, Blake AJ, Wilson C, Sun X, Champness NR, George MW, Hubberstey P, Mokaya R, Schröder M (2006) A porous framework polymer based on a Zinc (II) 4,4′-Bipyridine-2,6,2′,6′-tetracarboxylate: synthesis, structure, and “Zeolite-like” behaviors. J Am Chem Soc 128:10745–10753

    Article  CAS  Google Scholar 

  • Liu S, Gan L, Liu L, Zhang W, Zeng H (2002) Synthesis of single-crystalline TiO2 nanotubes. Chem Mater 14:1391–1397

    Article  CAS  Google Scholar 

  • Lundqvist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles: conformational changes depend on the particles' curvature and the protein stability. Langmuir 20:10639–10647

    Article  CAS  Google Scholar 

  • Mariano MB, Gustavo CN, Maria CM, Cesar AB (2005) Porous carbon-carbon composite replicated from a natural fibre. Chem Commun: 5896–5898

    Google Scholar 

  • Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266: 1961–1966

    Article  CAS  Google Scholar 

  • Meldrum FC, Seshadri R (2000) Porous gold structures through templating by echinoid skeletal plates. Chem Commun:29–30

    Google Scholar 

  • Morris RE, Wheatley PS (2008) Gas storage in nanoporous materials. Angew Chem Int Ed 47:4966–4981

    Article  CAS  Google Scholar 

  • Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods: anisotropic modules for a future nanotechnology. Angew Chem Int Ed 41:2446–2461

    Article  CAS  Google Scholar 

  • Perez GP, Crooks RM (2004) Pore-bridging poly(dimethylsiloxane) membranes as selective interfaces for vapor-phase chemical sensing. Anal Chem 76:4137–4142

    Article  CAS  Google Scholar 

  • Pouget E, Dujardin E, Cavalier A, Moreac A, Valéry C, March-Artzner V, Weiss T, Renault A, Paternostre M, Artzner F (2007) Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Mater 6: 434–439

    Article  CAS  Google Scholar 

  • Sanchezl C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Mater 4:277–288

    Article  Google Scholar 

  • Schattka JH, Wong EHM, Antonietti M, Caruso RA (2006) Sol-gel templating of membranes to form thick, porous titania, titania/zirconia and titania/silica films. J Mater Chem 16:1414–1420

    Article  CAS  Google Scholar 

  • Shan D, He Y, Wang S, Xue H, Zheng H (2006) A porous poly(acrylonitrile-co-acrylic acid) film-based glucose biosensor constructed by electrochemical entrapment. Anal Biochem 356:215–221

    Article  CAS  Google Scholar 

  • Shigapov AN, Graham GW, McCabe RW, Plummer HK Jr (2001) The preparation of high-surface area, thermally-stable, metal-oxide catalysts and supports by a cellulose templating approach. Appl Catal A 210:287–300

    Article  CAS  Google Scholar 

  • Shin Y, Li X, Wang C, Coleman JR, Exarhos GJ (2004) Synthesis of hierarchical titanium carbide from titania-coated cellulose paper. Adv Mater 16:1212–1215

    Article  CAS  Google Scholar 

  • Shin Y, Liu J, Chang JH, Nie Z, Exarhos GJ (2001) Hierarchically ordered ceramics through surfactant-templated sol-gel mineralization of biological cellular structures. Adv Mater 13:728–732

    Article  CAS  Google Scholar 

  • Tanaka D, Higuchi M, Horike S, Matsuda R, Kinoshita Y, Yanai N, Kitagawa S (2008) Storage and sorption properties of acetylene in jungle-gym-like open frameworks. Chem Asian J 3:1343–1349

    Article  CAS  Google Scholar 

  • Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807

    Article  CAS  Google Scholar 

  • Welbes LL, Borovik AS (2005) Confinement of metal complexes within porous hosts: development of functional materials for gas binding and catalysis. Acc Chem Res 38:765–774

    Article  CAS  Google Scholar 

  • Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  • Xiao R, Cho SI, Liu R, Lee SB (2007) Controlled electrochemical synthesis of conductive polymer nanotube structures. J Am Chem Soc 129:4483–4489

    Article  CAS  Google Scholar 

  • Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuat B 3:147–155

    Article  Google Scholar 

  • Yang D, Qi L, Ma J (2002) Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes. Adv Mater 14:1543–1546

    Article  CAS  Google Scholar 

  • Zabetakis D, Dinderman M, Schoen P (2005) Metal-coated cellulose fibers for use in composites applicable to microwave technology. Adv Mater 17:734–738

    Article  CAS  Google Scholar 

  • Zhang X, Goux WJ, Manohar SK (2004) Synthesis of polyaniline nanofibers by “nanofiber seeding”. J Am Chem Soc 126:4502–4503

    Article  CAS  Google Scholar 

  • Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gu, Y., Huang, J. (2010). Natural Cellulosic Substance Derived Nano-structured Materials. In: Li, J. (eds) Nanostructured Biomaterials. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05012-1_4

Download citation

Publish with us

Policies and ethics