Skip to main content

Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5858))

Abstract

Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: Ontologies for Enterprise Knowledge Management. IEEE Intelligent Systems 18(2), 26–33 (2003)

    Article  Google Scholar 

  2. Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Intelligent systems 16(2) (2001)

    Google Scholar 

  3. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology Based Context Modeling and Reasoning using OWL. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, PERCOMW, vol. 18. IEEE Computer Society, Washington (2004)

    Google Scholar 

  4. Ostrowski, D.A.: Rule Definition for Managing Ontology Development. Advances in Rule Interchange and Applications, 174–181 (2007)

    Google Scholar 

  5. Dou, D., McDermott, D., Qi, P.: Ontology translation on the Semantic Web. Journal on Data Semantics (JoDS) II, 35–57 (2005)

    Article  Google Scholar 

  6. Maedche, A., Staab, S.: Discovering conceptual relations from text. In: ECAI 2000, Proceedings of the 14th European Conference on Artificial Intelligence. IOS Press, Amsterdam (2000)

    Google Scholar 

  7. Berendt, B., Hotho, A., Stumme, G.: Towards Semantic Web Mining. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 264–278. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Appeared in KDD 1998, New York (1998)

    Google Scholar 

  9. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically partitioned data. In: Proceedings of the Eighth ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada (2002)

    Google Scholar 

  10. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining — a general survey and comparison. SIGKDD Explor. Newsl. 2, 1 (2000)

    Google Scholar 

  11. Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-Based Rule Mining in Large, Dense Databases. Data Min. Knowl. Discov. 4, 2–3 (2000)

    Google Scholar 

  12. Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning. In: Proceedings of the Fifth international Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan (2006)

    Google Scholar 

  13. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. Theory Pract. Log. Program. 4(2), 95–138 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial Intelligence 171(10-15), 619 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G., Willmott, S.: Towards an argument interchange format. Knowl. Eng. Rev. 21(4), 293–316 (2006)

    Article  Google Scholar 

  16. Core, M.G., Lane, H.C., van Lent, M., Gomboc, D., Solomon, S., Rosenberg, M.: Building explainable artificial intelligence systems. In: Proceedings of the 18th Conference on Innovative Applications of Artificial Intelligence (IAAI 2006), Boston, MA (2006)

    Google Scholar 

  17. Johnson, W.L.: Agents that explain their own actions. In: Proc. of the Fourth Conference on Computer Generated Forces and Behavioral Representation, Orlando, FL (1994)

    Google Scholar 

  18. Van Lent, M., Fisher, W., Mancuso, M.: An explainable artificial intelligence system for small-unit tactical behavior. In: Proceedings of the 16th Conference on Innovative Applications of Artificial Intelligence (IAAI 2004), San Jose, CA, pp. 900–907 (2004)

    Google Scholar 

  19. Wong, P.C., Whitney, P., Thomas, J.: Visualizing Association Rules for Text Mining. In: Proceedings of the 1999 IEEE Symposium on information Visualization. INFOVIS, p. 120. IEEE Computer Society, Washington (1999)

    Chapter  Google Scholar 

  20. Blanchard, J., Guillet, F., Briand, H.: Exploratory Visualization for Association Rule Rummaging. In: KDD 2003 Workshop on Multimedia Data Mining (MDM 2003) (2003)

    Google Scholar 

  21. Pfleeger, S.L., Hatton, L.: Investigating the Influence of Formal Methods. Computer 30(2), 33–43 (1997)

    Article  Google Scholar 

  22. Tilley, T., Cole, R., Becker, P., Eklund, P.: A survey of formal concept analysis support for software engineering activities. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 250–271. Springer, Heidelberg (2005)

    Google Scholar 

  23. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation. PLDI 2003, San Diego, California, USA, pp. 196–207. ACM, New York (2003)

    Chapter  Google Scholar 

  24. Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic programming errors. Softw. Pract. Exper. 30(7), 775–802 (2000)

    Article  MATH  Google Scholar 

  25. Dean, J., Grove, D., Chambers, C.: Optimization of Object-Oriented Programs Using Static Class Hierarchy Analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952, pp. 77–101. Springer, Heidelberg (1995)

    Google Scholar 

  26. Leite, J.C., Leonardi, M.C.: Business Rules as Organizational Policies. In: Proceedings of the 9th international Workshop on Software Specification and Design. International Workshop on Software Specifications & Design, p. 68. IEEE Computer Society, Washington (1998)

    Google Scholar 

  27. Wright, G., Ayton, P.: Eliciting and modelling expert knowledge. Decis. Support Syst. 3(1), 13–26 (1987)

    Article  Google Scholar 

  28. Mechitov, A.I., Moshkovich, H.M., Olson, D.L.: Problems of decision rule elicitation in a classification task. Decis. Support Syst. 12(2), 115–126 (1994)

    Article  Google Scholar 

  29. Larichev, A.I., Moshkovich, H.M.: Decision support system “CLASS” for R&D planning. In: Proceedings of the First International Conference on Expert Planning Systems, Brighton, England, pp. 227–232 (1990)

    Google Scholar 

  30. Business Rule Management Systems, http://en.wikipedia.org/wiki/BRMS

  31. SAP NetWeaver, https://www.sdn.sap.com/irj/sdn/nw-rules-management

  32. ILOG, http://www.ilog.com/products/businessrules/

  33. Park, S., Lee, J.K.: Rule identification using ontology while acquiring rules from Web pages. Int. J. Hum. Comput. Stud. 65(7), 659–673 (2007)

    Article  Google Scholar 

  34. McGuinness, D.L., van Harmelen, F. (eds.): OWL Web Ontology Language Overview. W3C Recommendation (February 10, 2004), http://www.w3.org/TR/2004/REC-owl-features-20040210/

  35. SWRL Submission, http://www.w3.org/Submission/SWRL/

  36. California Driver Handbook, http://www.dmv.ca.gov/pubs/dl600.pdf

  37. O’Connor, M.J., Musen, M.A., Das, A.: Using the Semantic Web Rule Language in the Development of Ontology-Driven Applications. In: Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches, ch. XXII. IGI Publishing (2009)

    Google Scholar 

  38. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL Plugin: An open development environment for semantic web applications. In: Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan, pp. 229–243 (2004)

    Google Scholar 

  39. Peace, J., Brennan, P.F.: Instance testing of the family history ontology. In: Proceedings of the American Medical Informatics Association (AMIA) Annual Symposium, Washington, DC, p. 1088 (2008)

    Google Scholar 

  40. Young, L., Tu, S.W., Tennakoon, L., Vismer, D., Astakhov, V., Gupta, A., Grethe, J.S., Martone, M.E., Das, A.K., McAuliffe, M.J.: Ontology-Driven Data Integration for Autism Research. In: Proceedings of the 22nd IEEE International Symposium on Computer-Based Medical Systems, IEEE CBMS (2009)

    Google Scholar 

  41. Tu, S., Tennakoon, L., O’Connor, M., Shankar, R., Das, A.: Using an integrated ontology and information model for querying and reasoning about phenotypes: the case of autism. In: Proceedings of the American Medical Informatics Association (AMIA) Annual Symposium, Washington, DC, pp. 727–731 (2008)

    Google Scholar 

  42. Levy, M.A., Rubin, D.L.: Tool support to enable evaluation of the clinical response to treatment. In: Proceedings of the American Medical Informatics Association (AMIA) Annual Symposium, Washington, DC, pp. 399–403 (2008)

    Google Scholar 

  43. Kulakowski, K., Nalepa, G.J.: Using UML state diagrams for visual modeling of business rules. In: International Multiconference on Computer Science and Information Technology, 2008. MCSIT 2008, October 20–22, pp. 189–194 (2008)

    Google Scholar 

  44. Lukichev, S.: Visual Modeling and Verbalization of Rules, KnowledgeWeb PhD Symposium (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hassanpour, S., O’Connor, M.J., Das, A.K. (2009). Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules. In: Governatori, G., Hall, J., Paschke, A. (eds) Rule Interchange and Applications. RuleML 2009. Lecture Notes in Computer Science, vol 5858. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04985-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04985-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04984-2

  • Online ISBN: 978-3-642-04985-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics