Segmentation of Heart Image Sequences Based on Human Way of Recognition

  • Arkadiusz Tomczyk
  • Piotr S. Szczepaniak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5819)


The paper presents a method of heart ventricle segmentation. The proposed approach tries to imitate a human process of top-down localisation of proper contour by subsequent detection of a whole heart, interventricular septum and, finally, left and right ventricle. As a tool of cotour detection adaptive potential active contours (APAC) are used. They allow both to describe smooth, medical shapes and, like the other active contour techniques, make it possible to use any expert knowledge in energy function. Finally, the paper discusses the obtained results.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tadeusiewicz, R., Flasinski, M.: Rozpoznawanie obrazow. Wydawnictwo Naukowe PWN, Warszawa (1991) (in Polish)Google Scholar
  2. 2.
    Sonka, M., Hlavec, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Chapman and Hall, Cambridge (1994)Google Scholar
  3. 3.
    Gonzalez, R., Woods, R.R.: Digital Image Processing. Prentice-Hall Inc., New Jersey (2002)Google Scholar
  4. 4.
    Tomczyk, A., Wolski, C., Szczepaniak, P.S., Rotkiewicz, A.: Analysis of Changes in Heart Ventricle Shape Using Contextual Potential Active Contour. In: Proceedings of 6th International Conference on Computer Recognition Systems CORES 2009 (accepted for publication)Google Scholar
  5. 5.
    Tomczyk, A.: Image segmentation using adaptive potential active contours. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Proceedings of 5th International Conference on Computer Recognition Systems CORES 2007, Adavnces in Soft Computing, pp. 148–155. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Kass, M., Witkin, W., Terzopoulos, S.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–333 (1988)CrossRefzbMATHGoogle Scholar
  7. 7.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Grzeszczuk, R., Levin, D.: Brownian strings: Segmenting images with stochastically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(10), 1100–1113 (1997)CrossRefGoogle Scholar
  9. 9.
    Tomczyk, A., Szczepaniak, P.S.: On the relationship between active contours and contextual classification. In: Kurzynski, M., et al. (eds.) Proceedings of the 4th Int. Conference on Computer Recognition Systems CORES 2005, pp. 303–310. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Arkadiusz Tomczyk
    • 1
  • Piotr S. Szczepaniak
    • 1
  1. 1.Institute of Computer ScienceTechnical University of LodzLodzPoland

Personalised recommendations