Advertisement

Data-Brain Modeling for Systematic Brain Informatics

  • Jianhui Chen
  • Ning Zhong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5819)

Abstract

In order to understand human intelligence in depth and find the cognitive models needed by Web Intelligence (WI), Brain Informatics (BI) adopts systematic methodology to study human “thinking centric” cognitive functions, and their neural structures and mechanisms in which the brain operates. For supporting systematic BI study, we propose a new conceptual brain data model, namely Data-Brain, which explicitly represents various relationships among multiple human brain data sources, with respect to all major aspects and capabilities of human information processing systems (HIPS). On one hand, constructing such a Data-Brain is the requirement of systematic BI study. On the other hand, BI methodology supports such a Data-Brain construction. In this paper, we design a multi-dimension framework of Data-Brain and propose a BI methodology based approach for Data-Brain modeling. By this approach, we can construct a formal Data-Brain which provides a long-term, holistic vision to understand the principles and mechanisms of HIPS.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, P.: The Entity-Relationship Model-towards a Unified View of Data. ACM Transactions on Database Systems 1(1), 9–36 (1976)CrossRefGoogle Scholar
  2. 2.
    Chen, J.H., Zhong, N.: Data-Brain Modeling Based on Brain Informatics Methodology. In: 2008 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2008), pp. 41–47. IEEE Computer Society Press, Los Alamitos (2008)CrossRefGoogle Scholar
  3. 3.
    Dameron, O., Gibaud, B., et al.: Towards a Sharable Numeric and Symbolic Knowledge Base on Cerebral Cortex Anatomy: Lessons from a Prototype. In: AMIA Symposium (AMIA 2002), pp. 185–189 (2002)Google Scholar
  4. 4.
    Fonseca, F., Martin, J.: Learning the Differences between Ontologies and Conceptual Schemes through Ontology-Driven Information Systems. JAIS, Special Issue on Ontologies in the Context of IS 8(2), 129–142 (2007)Google Scholar
  5. 5.
    Jarrar, M., Demey, J., Meersman, R.: On Using Conceptual Data Modeling for Ontology Engineering. In: Aberer, K., March, S., Spaccapietra, S. (eds.) Journal of Data Semantics. LNCS, vol. 2800, pp. 185–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Jin, H., Sun, A., et al.: Ontology-based Semantic Integration Scheme for Medical Image Grid. International Journal of Grid and Utility Computing 1(2), 86–97 (2009)CrossRefGoogle Scholar
  7. 7.
    Noy, N.F., Musen, M.A.: Specifying Ontology Views by Traversal. In: McIlraith, S.A., et al. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 713–725. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Uschold, M., King, M.: Towards Methodology for Building Ontologies. In: Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction with IJCAI 1995 (1995)Google Scholar
  9. 9.
    Uschold, M., Gruninger, M.: Ontologies Principles, Methods and Applications. Knowledge Engineering Review 11(2), 93–155 (1996)CrossRefGoogle Scholar
  10. 10.
    Wang, Y.X., Wang, Y., et al.: A Layered Reference Model of the Brain (LRMB). IEEE Transactions on Systems, Man, and Cybernetics (C) 36, 124–133 (2006)CrossRefGoogle Scholar
  11. 11.
    Zhong, N., Liu, J., Yao, Y.Y.: In Search of the Wisdom Web. IEEE Computer 35(11), 27–31 (2002)CrossRefGoogle Scholar
  12. 12.
    Zhong, N.: Building a Brain-Informatics Portal on the Wisdom Web with a Multi-layer Grid: A New Challenge for Web Intelligence Research. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 24–35. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Zhong, N.: Impending Brain Informatics (BI) Research from Web Intelligence (WI) Perspective. International Journal of Information Technology and Decision Making 5(4), 713–727 (2006)CrossRefGoogle Scholar
  14. 14.
    Zhong, N.: Actionable Knowledge Discovery: A Brain Informatics Perspective. Special Trends and Controversies department on Domain-Driven, Actionable Knowledge Discovery, IEEE Intelligent Systems, 85–86 (2007)Google Scholar
  15. 15.
    Australian EEG Database, http://eeg.newcastle.edu.au/inquiry/
  16. 16.
    Simulated Brain Database, http://www.bic.mni.mcgill.ca/brainweb/
  17. 17.
  18. 18.
    The fMRI Data Center, http://www.fmridc.org/f/fmridc
  19. 19.
  20. 20.
  21. 21.
    Olfactory Receptor DataBase, http://senselab.med.yale.edu/ORDB/default.asp

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jianhui Chen
    • 1
  • Ning Zhong
    • 1
    • 2
  1. 1.International WIC InstituteBeijing University of TechnologyBeijingP.R. China
  2. 2.Dept of Life Science and InformaticsMaebashi Institute of TechnologyMaebashi-CityJapan

Personalised recommendations