Reading What Machines “Think

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5819)


In this paper, we want to farther advance the parallelism between models of the brain and computing machines. We want to apply the same idea underlying neuroimaging techniques to electronic computers. Applying this parallelism, we can address these two questions: (1) how far we can go with neuroimaging in understanding human mind? (foundational perspective); (2) can we understand what computers “think”? (applicative perspective). Our experiments demonstrate that it is possible to believe that both questions have positive answers.


Electronic Computer Cognitive Activity Machine Learning Algorithm Activation Image Levenshtein Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiener, N.: Cybernetics: Or the Control and Communication in the Animal and the Machine. MIT Press, Cambridge (1948)Google Scholar
  2. 2.
    von Neumann, J.: First draft of a report on the edvac. IEEE Ann. Hist. Comput. 15(4), 27–75 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Turing, A.: Intelligent Machinery. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 3–23. Edinburgh University Press, Edinburgh (1969)Google Scholar
  4. 4.
    Neisser, U.: Cognitive Psychology. Appleton-Century-Crofts, New York (1967)Google Scholar
  5. 5.
    Von Eckardt, B.: What is cognitive science? MIT Press, Cambridge (1993)Google Scholar
  6. 6.
    Ishai, A., Ungerleider, L.G., Martin, A., Schouten, J.L., Haxby, J.V.: Distributed representation of objects in the human ventral visual pathway. In: Proc. Natl. Acad. Sci. U S A, vol. 96(16), pp. 9379–9384 (1999)Google Scholar
  7. 7.
    Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.M., Malave, V.L., Mason, R.A., Just, M.A.: Predicting human brain activity associated with the meanings of nouns. Science 320(5880), 1191–1195 (2008)CrossRefGoogle Scholar
  8. 8.
    Quinlan, J.: C4:5:programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  9. 9.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)CrossRefzbMATHGoogle Scholar
  10. 10.
    Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT: Proceedings of the Conference on Computational Learning Theory. Morgan Kaufmann, San Francisco (1998)Google Scholar
  11. 11.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Goan, T., Mayk, I.: Improving information exchange and coordination amongst homeland security organizations. In: Proceedings of the 10th International Command and Control Research and Technology Symposium, ICCRTS (2005)Google Scholar
  13. 13.
    Bose, I., Mahapatra, R.K.: Business data mining: a machine learning perspective. Information & management 39, 211–225 (2001)CrossRefGoogle Scholar
  14. 14.
    Zanzotto, F.M., Moschitti, A.: Automatic learning of textual entailments with cross-pair similarities. In: Proceedings of the 21st Coling and 44th ACL, Sydney, Australia, pp. 401–408 (July 2006)Google Scholar
  15. 15.
    Harris, Z.: Distributional structure. In: Katz, J.J., Fodor, J.A. (eds.) The Philosophy of Linguistics. Oxford University Press, New York (1964)Google Scholar
  16. 16.
    Alvarado, P., Doerfler, P., Wickel, J.: Axon2 - a visual object recognition system for non-rigid objects. In: IASTED International Conference-Signal Processing, Pattern Recognition and Applications (SPPRA), Rhodes, IASTED, pp. 235–240 (July 2001)Google Scholar
  17. 17.
    Alvarado, P., Doerfler, P.: LTI-Lib - A C++ Open Source Computer Vision Library. In: Kraiss, K.F. (ed.) Advanced Man-Machine Interaction. Fundamentals and Implementation, pp. 399–421. Springer, Dordrecht (2006)Google Scholar
  18. 18.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, Chicago (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.University of Rome Tor VergataRomaItaly

Personalised recommendations