A Functional Model of Limbic System of Brain

  • Takashi Kuremoto
  • Tomonori Ohta
  • Kunikazu Kobayashi
  • Masanao Obayashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5819)


A functional model of limbic system of brain is proposed by combining four conventional models: a chaotic neural network (CNN), a multi- layered chaotic neural network (MCNN), a hippocampus-neocortex model and an emotional model of amygdala. The composite model can realize mutual association of multiple time series patterns and transform short-term memory to long-term memory. The simulation results showed the effectiveness of the proposed model, and this study suggests the possibility of the brain model construction by means of integration of different kinds of artificial neural networks.


Limbic System Functional Model Emotional Learn Mutual Association Chaotic Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adachi, M., Aihara, K.: Associative Dynamics in Chaotic Neural Network. Neural Networks (10), 83–98 (1997)Google Scholar
  2. 2.
    Aihara, K., Takabe, T., Toyoda, M.: Chaotic Neural Networks. Physics Letters A. 144(6-7), 333–340 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Balkenius, C., Morén, J.: Emotional Learning: A Computational Model the Amygdala. Cybernetics and Systems 32(6), 611–636 (2000)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ito, M., Kuroiwa, J., Sawada, Y., Miyake, S.: A model of hippocampus-neocortex for episodic memory. In: Proc. 5th Intern. Conf. Neural Information Processing, 1P-16P, pp. 431–434 (1998)Google Scholar
  5. 5.
    Ito, M., Miyake, S., Inawashiro, S., Kuroiwa, J., Sawada, Y.: Long term memory of temporal patterns in a hippocampus-cortex model. Technical Report of IEICE. In: NLP 2000, Vol.18, pp. 25–32 (2000) (in Japanese)Google Scholar
  6. 6.
    Kajiwara, R., Takashima, I., Mimura, Y., Witter, M.P., Iijima, T.: Amygdala Input Promotes Spread of Excitatory Neural Activity from Perirhinal Cortex to the Entorhinal-Hippocampal circuit. J.europhysiology 89, 2176–2184 (2003)CrossRefGoogle Scholar
  7. 7.
    Kuremoto, T., Eto, T., Kobayashi, K., Obayashi, M.: A multilayered chaotic neural network for associative memory. In: Proc. of SICE Annual Conf., pp. 1020–1023 (2005)Google Scholar
  8. 8.
    Kuremoto, T., Eto, T., Kobayashi, K., Obayashi, M.: A chaotic model of hippocampus-neocortex. In: Wang, L., Chen, K., Ong, Y.S., (eds.) ICNC 2005. LNCS, vol. 3610, pp. 439–448. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kuremoto, T., Eto, T., Kobayashi, K., Obayashi, M.: A Hippocampus-Neocortex Model for Chaotic Association. In: Chen, K., Wang, L. (eds.) Trends in Neural Computation (Studies in Computational Intelligence), vol. 35, pp. 111–133 (2006)Google Scholar
  10. 10.
    Kuremoto, T., Ohta, T., Obayashi, M., Kobayashi, K.: A Dynamic Associative System by Adopting an Amygdala Model. Artif. Life and Robotics 13(2), 478–482 (2009)CrossRefGoogle Scholar
  11. 11.
    MaGaugh, J.L., Cahill, L., Roozendaal, B.: Involvement of the Amygdala in Memory Storage: Interation with Other Brain Systems. In: Proc. Natl. Acad. Sci. USA, vol. 93, pp. 13508–13514 (1996)Google Scholar
  12. 12.
    Mizutani, S., Sano, T., Uchiyama, T., Sonehara, N.: Controlling Chaos in Chaotic Neural Networks. Electronics and Communications in Japan, Part III: Fundamental Electronics Science 81(8), 73–82 (1998)CrossRefGoogle Scholar
  13. 13.
    Morén, J., Balkenius, C.: A Computational Model of Emotional Learning in the Amygdala. In: Proc. of the 6th Intern. Conf. on the Simulation of Adaptive Behavior. MIT Press, Cambridge (2000)Google Scholar
  14. 14.
    Rouhani, H., Jalili, M., Araabi, B.N., Eppler, W., Luscas, W.: Brain Emotional Learning Based Intelligent Controller Applied to Neurofuzzy Model of Micro-Heat Exchanger. Expert Sys. with Appli. 32, 911–918 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Takashi Kuremoto
    • 1
  • Tomonori Ohta
    • 1
  • Kunikazu Kobayashi
    • 1
  • Masanao Obayashi
    • 1
  1. 1.Graduate School of Science and EngineeringYamaguchi UniversityUbeJapan

Personalised recommendations