Skip to main content

Bounds for Multistage Stochastic Programs Using Supervised Learning Strategies

  • Conference paper
Book cover Stochastic Algorithms: Foundations and Applications (SAGA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5792))

Included in the following conference series:

Abstract

We propose a generic method for obtaining quickly good upper bounds on the minimal value of a multistage stochastic program. The method is based on the simulation of a feasible decision policy, synthesized by a strategy relying on any scenario tree approximation from stochastic programming and on supervised learning techniques from machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frauendorfer, K.: Barycentric scenario trees in convex multistage stochastic programming. Mathematical Programming 75, 277–294 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Dempster, M.: Sequential importance sampling algorithms for dynamic stochastic programming. Annals of Operations Research 84, 153–184 (1998)

    Google Scholar 

  3. Dupacova, J., Consigli, G., Wallace, S.: Scenarios for multistage stochastic programs. Annals of Operations Research 100, 25–53 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Høyland, K., Wallace, S.: Generating scenario trees for multistage decision problems. Management Science 47(2), 295–307 (2001)

    Article  MATH  Google Scholar 

  5. Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 353–425. Elsevier, Amsterdam (2003)

    Chapter  Google Scholar 

  6. Casey, M., Sen, S.: The scenario generation algorithm for multistage stochastic linear programming. Mathematics of Operations Research 30, 615–631 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hochreiter, R., Pflug, G.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Annals of Operations Research 152, 257–272 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs via integration quadratures. Mathematical Programming 116, 461–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Heitsch, H., Römisch, W.: Scenario tree modeling for multistage stochastic programs. Mathematical Programming 118(2), 371–406 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shapiro, A.: On complexity of multistage stochastic programs. Operations Research Letters 34(1), 1–8 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shapiro, A.: Inference of statistical bounds for multistage stochastic programming problems. Mathematical Methods of Operations Research 58(1), 57–68 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golub, B., Holmer, M., McKendall, R., Pohlman, L., Zenios, S.: A stochastic programming model for money management. European Journal of Operational Research 85, 282–296 (1995)

    Article  MATH  Google Scholar 

  13. Kouwenberg, R.: Scenario generation and stochastic programming models for asset liability management. European Journal of Operational Research 134, 279–292 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hilli, P., Pennanen, T.: Numerical study of discretizations of multistage stochastic programs. Kybernetika 44, 185–204 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, Chichester (1995)

    MATH  Google Scholar 

  16. Vapnik, V.: Statistical Learning Theory. Wiley, Chichester (1998)

    MATH  Google Scholar 

  17. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  18. Wahba, G., Golub, G., Heath, M.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Efron, B., Tibshirani, R.: An introduction to the bootstrap. Chapman and Hall, London (1993)

    Book  MATH  Google Scholar 

  20. Thénié, J., Vial, J.P.: Step decision rules for multistage stochastic programming: A heuristic approach. Automatica 44, 1569–1584 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Küchler, C., Vigerske, S.: Numerical evaluation of approximation methods in stochastic programming (2008) (submitted)

    Google Scholar 

  22. Cover, T.: Estimation by the nearest neighbor rule. IEEE Transactions on Information Theory 14, 50–55 (1968)

    Article  MATH  Google Scholar 

  23. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Proceedings of the Second International Symposium on Information Theory, pp. 267–281 (1973)

    Google Scholar 

  24. Schwartz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  25. Rissanen, J.: Stochastic complexity and modeling. Annals of Statistics 14, 1080–1100 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. James, G., Radchenko, P., Lv, J.: DASSO: connections between the Dantzig selector and Lasso. Journal of the Royal Statistical Society: Series B 71, 127–142 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chapelle, O., Vapnik, V., Bengio, Y.: Model selection for small sample regression. Machine Learning 48, 315–333 (2002)

    Article  MATH  Google Scholar 

  28. Huber, P.: Projection pursuit. Annals of Statistics 13, 435–475 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Buja, A., Hastie, T., Tibshirani, R.: Linear smoothers and additive models. Annals of Statistics 17, 453–510 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. Friedman, J.: Multivariate adaptive regression splines (with discussion). Annals of Statistics 19, 1–141 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Computation 7, 219–269 (1995)

    Article  Google Scholar 

  32. Williams, C., Rasmussen, C.: Gaussian processes for regression. In: Advances in Neural Information Processing Systems 8 (NIPS 1995), pp. 514–520 (1996)

    Google Scholar 

  33. Smola, A., Schölkopf, B., Müller, K.R.: The connection between regularization operators and support vector kernels. Neural Networks 11, 637–649 (1998)

    Article  Google Scholar 

  34. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Chichester (1994)

    Book  MATH  Google Scholar 

  35. Bertsekas, D., Tsitsiklis, J.: Neuro-Dynamic Programming. Athena Scientific, Belmont (1996)

    MATH  Google Scholar 

  36. Sutton, R., Barto, A.: Reinforcement Learning, an introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  37. Bagnell, D., Kakade, S., Ng, A., Schneider, J.: Policy search by dynamic programming. In: Advances in Neural Information Processing Systems 16 (NIPS 2003), pp. 831–838 (2004)

    Google Scholar 

  38. Lagoudakis, M., Parr, R.: Reinforcement learning as classification: leveraging modern classifiers. In: Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), pp. 424–431 (2003)

    Google Scholar 

  39. Ernst, D., Geurts, P., Wehenkel, L.: Tree-based batch mode reinforcement learning. Journal of Machine Learning Research 6, 503–556 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Langford, J., Zadrozny, B.: Relating reinforcement learning performance to classification performance. In: Proceedings of the Twenty-Second International Conference on Machine Learning (ICML 2005), pp. 473–480 (2005)

    Google Scholar 

  41. Fern, A., Yoon, S., Givan, R.: Approximate policy iteration with a policy language bias: solving relational Markov Decision Processes. Journal of Artificial Intelligence Research 25, 85–118 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Defourny, B., Ernst, D., Wehenkel, L. (2009). Bounds for Multistage Stochastic Programs Using Supervised Learning Strategies. In: Watanabe, O., Zeugmann, T. (eds) Stochastic Algorithms: Foundations and Applications. SAGA 2009. Lecture Notes in Computer Science, vol 5792. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04944-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04944-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04943-9

  • Online ISBN: 978-3-642-04944-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics