Bipartite Graph Representation of Multiple Decision Table Classifiers

  • Kazuya Haraguchi
  • Seok-Hee Hong
  • Hiroshi Nagamochi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5792)

Abstract

In this paper, we consider the two-class classification problem, a significant issue in machine learning. From a given set of positive and negative samples, the problem asks to construct a classifier that predicts the classes of future samples with high accuracy. For this problem, we have studied a new visual classifier in our previous works, which is constructed as follows: We first create several decision tables and extract a bipartite graph structure (called an SE-graph) between the given set of samples and the set of created decision tables. We then draw the bipartite graph as a two-layered drawing by using an edge crossing minimization technique, and the resulting drawing acts as a visual classifier. We first describe our background and philosophy on such a visual classifier, and then consider improving its classification accuracy. We demonstrate the effectiveness of our methodology by computational studies using benchmark data sets, where the new classifier outperforms our older version, and is competitive even with such standard classifiers as C4.5 or LibSVM.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friedman, J.H.: Recent advances in predictive (machine) learning. Journal of Classification 23, 175–197 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Kettenring, J.R.: The practice of cluster analysis. Journal of Classification 23, 3–30 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  4. 4.
    Haraguchi, K., Hong, S., Nagamochi, H.: Visual analysis of hierarchical data using 2.5D drawing with minimum occlusion. In: IEEE PacificVis 2008 (2008) (poster session)Google Scholar
  5. 5.
    Haraguchi, K., Hong, S., Nagamochi, H.: Visual analysis of hierarchical data using 2.5D drawing with minimum occlusion. Technical Report 2009-010, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Japan (2009)Google Scholar
  6. 6.
    Ware, C.: Designing with a 2 1/2D attitude. Information Design Journal 10(3), 171–182 (2001)CrossRefGoogle Scholar
  7. 7.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: WWW10, pp. 613–622. ACM, New York (2001)Google Scholar
  8. 8.
    Biedl, T.C., Brandenburg, F.J., Deng, X.: Crossings and permutations. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Haraguchi, K., Hong, S., Nagamochi, H.: Classification by ordering data samples. RIMS Kokyuroku 1644, 20–34 (2009)Google Scholar
  10. 10.
    Haraguchi, K., Hong, S., Nagamochi, H.: Classification via visualization of sample-feature bipartite graphs. Technical Report 2009-011, Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Japan (2009)Google Scholar
  11. 11.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics SMC-11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Haraguchi, K., Hong, S., Nagamochi, H.: Visualization can improve multiple decision table classifiers. In: Proc. of MDAI (to appear, 2009)Google Scholar
  13. 13.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  14. 14.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm
  15. 15.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005), http://www.cs.waikato.ac.nz/ml/weka/ MATHGoogle Scholar
  16. 16.
    Kohavi, R.: The power of decision tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on Algebraic and Discrete Methods 4, 312–316 (1983)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Nagamochi, H.: An improved bound on the one-sided minimum crossing number in two-layered drawings. Discrete and Computational Geometry 33(4), 569–591 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Huang, W., Hong, S., Eades, P.: Layout effects on sociogram perception. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 262–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: Performance of exact and heuristic algorithms. Journal of Graph Algorithms and Applications 1(1), 1–25 (1997)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Stanfill, C., Waltz, D.L.: Toward memory-based reasoning. Commun. ACM 29(12), 1213–1228 (1986)CrossRefGoogle Scholar
  24. 24.
    Asuncion, A., Newman, D.: UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html
  25. 25.
    Haraguchi, K., Nagamochi, H.: Extension of ICF classifiers to real world data sets. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 776–785. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Weiss, S.M., Kulikowski, C.A.: Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. Morgan Kaufmann, San Francisco (1991)Google Scholar
  27. 27.
    Grabczewski, K., Jankowski, N.: Transformations of symbolic data for continuous data oriented models. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 359–366. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kazuya Haraguchi
    • 1
  • Seok-Hee Hong
    • 2
  • Hiroshi Nagamochi
    • 3
  1. 1.Faculty of Science and EngineeringIshinomaki Senshu UniversityJapan
  2. 2.School of Information TechnologiesUniversity of SydneyAustralia
  3. 3.Department of Applied Mathematics and Physics, Graduate School of InformaticsKyoto UniversityJapan

Personalised recommendations