Semantic Web for Search

  • Jessica Gronski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5823)

Abstract

Semantic Web data seems like a promising source of information for improving search. While there is some literature about how semantic data should be used to enhance search, there are no positive conclusions about the best approach. This paper surveys existing approaches to semantic web search, describes adapting a TREC benchmark for evaluation, and proposes a learned representation algorithm for using semantic web data in search.

References

  1. 1.
    Anyanwu, K., Maduko, A., Sheth, A.: Semrank: ranking complex relationship search results on the semantic web. In: WWW 2005, pp. 117–127. ACM Press, New York (2005)CrossRefGoogle Scholar
  2. 2.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web: Scientific american. Scientific american (2001)Google Scholar
  3. 3.
    Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid search: Effectively combining keywords and semantic searches, pp. 554–568 (2008)Google Scholar
  4. 4.
    Buckley, C., Singhal, A., Mitra, M., Salton, G.: New retrieval approaches using smart: TrecGoogle Scholar
  5. 5.
    Clarke, C.L.A., Cormack, G.V., Tudhope, E.A.: Relevance ranking for one to three term queries. Inf. Process. Manage. 36(2), 291–311 (2000)CrossRefGoogle Scholar
  6. 6.
    Ding, C., He, X., Husbands, P., Zha, H., Simon, H.: Pagerank, HITS and a unified framework for link analysis. Technical Report 49372, LBNL (2002)Google Scholar
  7. 7.
    Ding, L., Finin, T., Joshi, A., Peng, Y., Pan, R., Reddivari, P.: Search on the semantic web. Computer 38(10), 62–69 (2005)CrossRefGoogle Scholar
  8. 8.
    Fernandez, M., Lopez, V., Sabou, M., Uren, V., Vallet, D., Motta, E., Castells, P.: Semantic search meets the web. In: IEEE Semantic Computing, pp. 253–260 (2008)Google Scholar
  9. 9.
    Finin, T., Mayfield, J., Joshi, A., Cost, R.S., Fink, C.: Information retrieval and the semantic web, p. 113a (2005)Google Scholar
  10. 10.
    Gevrey, J., Ruger, S.M.: Link-based approaches for text retrieval. In: Text REtrieval Conference (2001)Google Scholar
  11. 11.
    Guha, R., Mccool, R., Miller, E.: Semantic search. In: WWW 2003: Proceedings of the 12th international conference on World Wide Web, pp. 700–709. ACM Press, New York (2003)Google Scholar
  12. 12.
    Heflin, J., Hendler, J.: Searching the web with shoe. In: AAAI Workshop 2000, pp. 35–40 (2000)Google Scholar
  13. 13.
    Joachims, T.: Learning to Classify Text Using Support Vector Machines: Methods, Theory and Algorithms. Kluwer Academic Publishers, Norwell (2002)Google Scholar
  14. 14.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46(5), 604–632 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lempel, R., Moran, S.: Salsa: the stochastic approach for link-structure analysis. ACM Trans. Inf. Syst. 19(2), 131–160 (2001)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Michalowski, M., Ambite, J.L., Thakkar, S., Tuchinda, R., Knoblock, C.A., Minton, S.: Retrieving and semantically integrating heterogeneous data from the web. Intelligent Systems, IEEE 19(3), 72–79 (2004)CrossRefGoogle Scholar
  18. 18.
    Möller, K., Bojrs, U., Breslin, J.: Using semantics to enhance the blogging experience, pp. 679–696 (2006)Google Scholar
  19. 19.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project (1998)Google Scholar
  20. 20.
    Patel, C., Supekar, K., Lee, Y., Park, E.K.: Ontokhoj: a semantic web portal for ontology searching, ranking and classification. In: WIDM 2003, pp. 58–61. ACM Press, New York (2003)CrossRefGoogle Scholar
  21. 21.
    Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: Kim & ndash; a semantic platform for information extraction and retrieval. Nat. Lang. Eng. 10(3-4), 375–392 (2004)CrossRefGoogle Scholar
  22. 22.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24(5), 513–523 (1988)CrossRefGoogle Scholar
  23. 23.
    Salton, G., Fox, E.A., Wu, H.: Extended boolean information retrieval. Commun. ACM 26(11), 1022–1036 (1983)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., Warke, Y.: Managing semantic content for the web. IEEE Internet Computing 6(4), 80–87 (2002)CrossRefGoogle Scholar
  25. 25.
    Singhal, A., Buckley, C., Mitra, M.: Pivoted document length normalization. In: SIGIR 1996, pp. 21–29. ACM, New York (1996)CrossRefGoogle Scholar
  26. 26.
    Stojanovic, N., Studer, R., Stojanovic, L.: An approach for the ranking of query results in the semantic web, pp. 500–516 (2003)Google Scholar
  27. 27.
    Wu, G., Li, J.: Swrank: An approach for ranking semantic web reversely and consistently. In: SKG 2007, pp. 116–121. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  28. 28.
    Zhou, D., Zhu, S., Yu, K., Song, X., Tseng, B.L., Zha, H., Giles, L.C.: Learning multiple graphs for document recommendations. In: WWW 2008, pp. 141–150. ACM, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jessica Gronski
    • 1
  1. 1.UC Santa Cruz 

Personalised recommendations