Advertisement

Polypeptide Dynamics

  • George FloudasEmail author
  • Marian Paluch
  • Andrzej Grzybowski
  • K. L. Ngai
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT, volume 1)

Abstract

Abstract: Chapter 6 reviews recent efforts to investigate the hierarchical self-assembly and dynamics in an important class of biomaterials: polypeptides. Polypeptides play a vital part of the molecules designed for use in drug delivery of gene therapy and thus have been subject of intensive studies. However, their dynamic response only recently has started to be explored. In the first part we discuss the origin of the dynamic arrest of polypeptides at the glass “transition”. In this respect, pressure plays again a decisive role as it is used to identify structural and dynamic defects (i.e. solitons). Subsequently, and as a direct consequence of the first part, we discuss that, contrary to expectation and common belief, helices in concentrated polypeptide solutions are objects of low persistence. In the third part we address the effect of confinement in controlling the type, the persistence and dynamics of secondary structures.

Keywords

Anodic Aluminum Oxide Glass Temperature Segmental Dynamic Backbone Dynamic Dielectric Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

We thank several people that contributed to the work presented in this chapter: Prof. N. Hadjichristidis, Prof. H. Iatrou, Prof. H.-A. Klok and Dr. H. Duran for the synthesis; Dr. M. Mondeshki and Prof. H.W. Spiess for the solid state NMR studies and for many fruifull discussions; and Dr. P. Papadopoulos and Dr. A. Gitsas for the dielectric studies.

References

  1. 1.
    Walton AG, Blackwell J (1973) Biopolymers. Academic, New YorkGoogle Scholar
  2. 2.
    Block H (1983) Poly(γ-benzyl-l-glutamate) and other glutamic acid containing polymers. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  3. 3.
    Kricheldorf HR (2006) Angew Chem Int Ed 45:5752CrossRefGoogle Scholar
  4. 4.
    Frauenfelder H, Sligar SG, Wolynes PG (1991) Science 254:1598CrossRefGoogle Scholar
  5. 5.
    McCammon JA, Gelin BR, Karplus M (1977) Nature 267:585CrossRefGoogle Scholar
  6. 6.
    Sali A, Shakhnovich E, Karplus M (1994) Nature 369:248CrossRefGoogle Scholar
  7. 7.
    Deming TJ (1997) Nature 390:386CrossRefGoogle Scholar
  8. 8.
    Klok HA, Lecommandoux S (2006) Adv Polym Sci 202:75CrossRefGoogle Scholar
  9. 9.
    Duncan R (2003) Nat Rev Drug Discovery 2:347CrossRefGoogle Scholar
  10. 10.
    Hakimi O, Knight DP, Knight MM, Grahn MF, Vadgama P (2006) Biomacromolecules 7:2901CrossRefGoogle Scholar
  11. 11.
    Shoji A, Ozaki T, Saito H, Tabeta R, Ando I (1984) Macromolecules 17:1472CrossRefGoogle Scholar
  12. 12.
    van Beek JD, Beaulieu L, Schafer H, Demura M, Asakura T, Meier BH (2000) Nature 405:1077CrossRefGoogle Scholar
  13. 13.
    Stockmayer WH (1967) Pure Appl Chem 15:539CrossRefGoogle Scholar
  14. 14.
    Block H (1979) Adv Polym Sci 33:93CrossRefGoogle Scholar
  15. 15.
    Bur AJ, Roberts DE (1969) J Chem Phys 51:406CrossRefGoogle Scholar
  16. 16.
    Frauenfleder H, Chen G, Berendzen J, Fenimore PW, Jansson H, McMahon BH, Stroe IR, Swenson J, Young RD (2009) Proc Natl Acad Sci USA 106:5129CrossRefGoogle Scholar
  17. 17.
    Jansson H, Swenson J (2010) Biochim Biophys Acta 1804:20CrossRefGoogle Scholar
  18. 18.
    Doster W, Cusack S, Petry W (1989) Nature (London) 337:754CrossRefGoogle Scholar
  19. 19.
    Vitkup D, Melamud E, Moult J, Sander C (2000) Nat Struct Biol 7:34CrossRefGoogle Scholar
  20. 20.
    Rasmussen BF, Stock AM, Ringe D, Petsko GA (1992) Nature (London) 357:423CrossRefGoogle Scholar
  21. 21.
    Floudas G, Mpoukouvalas K, Papadopoulos P (2006) J Chem Phys 124:07490CrossRefGoogle Scholar
  22. 22.
    Papadopoulos P, Floudas G, Klok HA, Schnell I, Pakula T (2004) Biomacromolecules 5:81CrossRefGoogle Scholar
  23. 23.
    Floudas G, Papadopoulos P, Klok HA, Vandermeulen GWM, Rodriguez-Hernandez J (2003) Macromolecules 36:3673CrossRefGoogle Scholar
  24. 24.
    Papadopoulos P, Floudas G, Schnell I, Klok HA, Aliferis T, Iatrou H, Hadjichristidis N (2005) J Chem Phys 122:224906CrossRefGoogle Scholar
  25. 25.
    Papadopoulos P, Floudas G, Schnell I, Aliferis T, Iatrou H, Hadjichristidis N (2005) Biomacromolecules 6:2352CrossRefGoogle Scholar
  26. 26.
    Mondeshki M, Mihov G, Graf R, Spiess HW, Müllen K, Papadopoulos P, Gitsas A, Floudas G (2006) Macromolecules 39:9605CrossRefGoogle Scholar
  27. 27.
    Koynov K, Mihov G, Mondeshki M, Moon C, Spiess HW, Müllen K, Butt HJ, Floudas G (2007) Biomacromolecules 8:1745CrossRefGoogle Scholar
  28. 28.
    Gitsas A, Floudas G, Mondeshki M, Spiess HW, Aliferis T, Iatrou H, Hadjichristidis N (2008) Macromolecules 41:8072CrossRefGoogle Scholar
  29. 29.
    Gitsas A, Floudas G, Modenshki M, Butt HJ, Spiess HW, Iatrou H, Hadjichristidis N (2008) Biomacromolecules 9:1959CrossRefGoogle Scholar
  30. 30.
    Duran H, Gitsas A, Floudas G, Mondeshki M, Steinhart M, Knoll W (2009) Macromolecules 42:2881CrossRefGoogle Scholar
  31. 31.
    Gitsas A, Floudas G, Mondeshki M, Lieberwirth I, Spiess HW, Iatrou H, Hadjichristidis N (2010) Macromolecules 43:1874CrossRefGoogle Scholar
  32. 32.
    Keller H, Debrunner PG (1980) Phys Rev Lett 45:68CrossRefGoogle Scholar
  33. 33.
    Iben IET, Braunstein D, Doster W, Frauenfelder H, Hong MK, Johnson JB, Luck S, Ormos P, Schulte A, Steinbach PJ, Xie AH, Young RD (1989) Phys Rev Lett 62:1916CrossRefGoogle Scholar
  34. 34.
    Smith J, Kuczera K, Kaplus M (1990) Proc Natl Acad Sci USA 87:1601CrossRefGoogle Scholar
  35. 35.
    Norberg J, Nilsson L (1996) Proc Natl Acad Sci USA 93:10173CrossRefGoogle Scholar
  36. 36.
    Aliferis T, Iatrou H, Hadjichristidis N (2004) Biomacromolecules 5:1653CrossRefGoogle Scholar
  37. 37.
    Aliferis T, Iatrou H, Hadjichristidis N (2005) J Polym Sci A Polym Chem 43:4670CrossRefGoogle Scholar
  38. 38.
    Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic, New YorkGoogle Scholar
  39. 39.
    Papadopoulos P, Peristeraki D, Floudas G, Koutalas G, Hadjichristidis N (2004) Macromolecules 37:8116CrossRefGoogle Scholar
  40. 40.
    Wada AJ (1958) Chem Phys 29:674; 1959, 30:328; 1959, 30:329Google Scholar
  41. 41.
    Mori Y, Ookubo N, Hayakawa R, Wada Y (1982) J Polym Sci Polym Phys Ed 20:211CrossRefGoogle Scholar
  42. 42.
    Moscicki K, Williams G (1983) J Polym Sci Polym Phys Ed 21:197CrossRefGoogle Scholar
  43. 43.
    Watanabe J, Uematsu I (1984) Polymer 25:1711CrossRefGoogle Scholar
  44. 44.
    Schmidt A, Lehmann S, Georgelin M, Katana G, Mathauer K, Kremer F, Schmidt-Rohr K, Boeffel C, Wegner G, Knoll W (1995) Macromolecules 28:5487CrossRefGoogle Scholar
  45. 45.
    Hartmann L, Kratzmüller T, Braun HG, Kremer F (2000) Macromol Rapid Commun 21:814CrossRefGoogle Scholar
  46. 46.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press Inc., New YorkGoogle Scholar
  47. 47.
    Wang C, Pecora R (1980) J Chem Phys 72:5333CrossRefGoogle Scholar
  48. 48.
    Moscicki JK, Williams G (1983) J Polym Sci Polym Phys Ed 21:213CrossRefGoogle Scholar
  49. 49.
    Williams G (1982) J Polym Sci Polym Phys Ed 20:1963CrossRefGoogle Scholar
  50. 50.
    Williams G (1983) J Polym Sci Polym Phys Ed 21:2037CrossRefGoogle Scholar
  51. 51.
    Zimm BH, Bragg JK (1959) J Chem Phys 31:526CrossRefGoogle Scholar
  52. 52.
    Flory PJ (1978) Macromolecules 11:1126CrossRefGoogle Scholar
  53. 53.
    Flory PJ, Frost RS (1978) Macromolecules 11:1134CrossRefGoogle Scholar
  54. 54.
    Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, New YorkGoogle Scholar
  55. 55.
    Papadopoulos P, Floudas G (Sept 2005) Dielectrics NewslettersGoogle Scholar
  56. 56.
    Floudas G, Spiess HW (2009) Macromol Rapid Commun 30:278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • George Floudas
    • 1
    Email author
  • Marian Paluch
    • 2
  • Andrzej Grzybowski
    • 2
  • K. L. Ngai
    • 3
  1. 1.Dept. PhysicsUniversity of IoanninaIoanninaGreece
  2. 2.Inst. PhysicsUniversity of SilesiaKatowicePoland
  3. 3.CNR-IPCF Associate Dipartimento di FisicaUniversitaà di PisaPisaItaly

Personalised recommendations