Advertisement

New Physics Gained by the Application of Pressure in the Study of Dynamics of Glass Formers

  • George FloudasEmail author
  • Marian Paluch
  • Andrzej Grzybowski
  • K. L. Ngai
Chapter
Part of the Advances in Dielectrics book series (ADVDIELECT, volume 1)

Abstract

Several remarkable dynamic properties of glass-forming materials have recently been discovered experimentally by the application of pressure. These properties have great impact on the research field of glass transition because they are general and fundamental, and not easy to explain. We review some of these experimental facts and show that they originate from new physics not previously considered. Likely the new physics arise from many-body relaxation dynamics of the structural-relaxation due to intermolecular interaction. While these properties are either not explained or not explainable by conventional theories and models, they can be rationalized by the coupling model.

Keywords

Glass Transition Coupling Model Elevated Pressure Dielectric Relaxation Propylene Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bridgman PW (1926) Proc Am Arts Sci 61:57CrossRefGoogle Scholar
  2. 2.
    Schug KU, King HE Jr, Böhmer R (1998) J Chem Phys 109:1472CrossRefGoogle Scholar
  3. 3.
    Gilchrist A, Earley JE, Cole RH (1957) J Chem Phys 26:196CrossRefGoogle Scholar
  4. 4.
    Williams G (1964) Trans Faraday Soc 60:1548CrossRefGoogle Scholar
  5. 5.
    Williams G (1964) Trans Faraday Soc 60:1556CrossRefGoogle Scholar
  6. 6.
    Williams G (1966) Trans Faraday Soc 62:2091CrossRefGoogle Scholar
  7. 7.
    Williams G, Watts DC (1971) Trans Faraday Soc 67:1971CrossRefGoogle Scholar
  8. 8.
    Williams G (1979) Adv Polym Sci 33:60Google Scholar
  9. 9.
    McCrum NG, Read BE, Williams G (1991) Anelastic and dielectric effects in polymeric solids. Dover, New YorkGoogle Scholar
  10. 10.
    Sasabe H, Saito S (1968) J Polym Sci Polym Phys Ed 6:1401Google Scholar
  11. 11.
    Saito S, Sasabe H, Nakajima T, Yada K (1968) J Polym Sci Part 6:1297Google Scholar
  12. 12.
    Sasabe H, Saito S, Asahina M, Kakutani H (1969) J Polym Sci Polym Phys Ed 7:1405Google Scholar
  13. 13.
    Johari GP, Whalley E (1972) Faraday Symp Chem Soc 6:23CrossRefGoogle Scholar
  14. 14.
    Naoki M, Matsumoto K, Matsushita M (1986) J Phys Chem 90:4423CrossRefGoogle Scholar
  15. 15.
    Naoki M, Endou H, Matsumoto K (1987) J Phys Chem 91:4169CrossRefGoogle Scholar
  16. 16.
    Naoki M, Katahira S (1991) J Phys Chem 95:431CrossRefGoogle Scholar
  17. 17.
    Naoki M, Ujita K, Kashima S (1993) J Phys Chem 97:12356CrossRefGoogle Scholar
  18. 18.
    Okuchi T, Cody GD, Mao HK, Hemley RJ (2005) J Chem Phys 122:244509CrossRefGoogle Scholar
  19. 19.
    Fytas G, Dorfmüller Th, Wang CH (1983) J Phys Chem 87:5041CrossRefGoogle Scholar
  20. 20.
    Fytas G, Patkowski A, Meier G, Dorfmüller Th (1982) Macromolecules 15:21Google Scholar
  21. 21.
    Oliver WF, Herbst CA, Lindsay SM, Wolf GH (1991) Phys Rev Lett 67:2795CrossRefGoogle Scholar
  22. 22.
    Atake T, Angell CA (1979) J Phys Chem 83:3218CrossRefGoogle Scholar
  23. 23.
    Takahara S, Ishikawa M, Yamamuro O, Matsuo T (1999) J Phys Chem B 103:792CrossRefGoogle Scholar
  24. 24.
    Yamamuro O, Takahara S, Suga H (1995) J Non-Cryst Solids 183:144CrossRefGoogle Scholar
  25. 25.
    For an editorial in New York Times touting the importance of glass transition and the difficulty in solving this problem, see Chang K (2008) The nature of glass remains anything but clear. The New York Times, July 29, 2008.)Google Scholar
  26. 26.
    Kovacs AJ (1963) Fortschr Hochpolym Forsch 3:S394CrossRefGoogle Scholar
  27. 27.
    Kovacs AJ, Aklonis JJ, Hutchinson JM, Ramos AR (1979) J Polym Sci Polym Phys Ed 17:1097CrossRefGoogle Scholar
  28. 28.
    Hodge IM (1994) J Non-Cryst Solids 169:211CrossRefGoogle Scholar
  29. 29.
    Ngai KL, Casalini R, Capaccioli S, Paluch M, Roland CM (2005) J Phys Chem B 109:17356CrossRefGoogle Scholar
  30. 30.
    Ngai KL, Casalini R, Capaccioli S, Paluch M, Roland CM (2006) In: Kalmykov YP, Coffey WT, Rice SA (eds) Adv Chem Phys. Part B, Fractals, diffusion and relaxation in disordered complex systems (chapter 10), vol 133. Wiley, New York, p 497Google Scholar
  31. 31.
    Ngai KL (2003) J Phys Condens Matter 15:S1107CrossRefGoogle Scholar
  32. 32.
    Ngai KL (2005) J Non-Cryst Solids 351:2635CrossRefGoogle Scholar
  33. 33.
    Ngai KL, Capaccioli S (2008) J Phys Condens Matter 20:244101CrossRefGoogle Scholar
  34. 34.
    Ngai KL, Paluch M (2004) J Chem Phys 120:857CrossRefGoogle Scholar
  35. 35.
    Ngai KL, Tsang KY (1999) Phys Rev E 60:4511CrossRefGoogle Scholar
  36. 36.
    Ngai KL (2001) IEEE Trans Dielectr Electr Insul 8:329CrossRefGoogle Scholar
  37. 37.
    Ngai KL (1979) Comments Solid State Phys 9:127Google Scholar
  38. 38.
    Ngai KL (1987) Evidences for universal behavior of condensed mater at low frequencies/long times. In: Ramakrishnan TV, Raj Lakshmi M (eds) Non-Debye relaxation in condensed matter. World Scientific, Singapore, pp 23–193Google Scholar
  39. 39.
    Williams G, Watts DC (1970) Trans Faraday Soc 67:1971CrossRefGoogle Scholar
  40. 40.
    Williams G, Watts DC, Dev M, North A (1971) Trans Faraday Soc 67:1971CrossRefGoogle Scholar
  41. 41.
    Cardona M, Chamberlin RV, Marx W (2007) Ann Phys (Leipzig) 16(12):842CrossRefGoogle Scholar
  42. 42.
    Rivera-Calzada A, Kaminski K, Leon C, Paluch M (2008) J Phys Chem B 112:3110CrossRefGoogle Scholar
  43. 43.
    Ngai KL, Capaccioli S, Prevosto D, Paluch M (2010) In: Rzoska S, Drozd-Rzoska A, Mazur S. Rzoska, A. Drozd-Rzoska, Mazur V (eds) Metastable systems under pressure. NATO science for peace and security series-A: chemistry and biology. Springer, Heidelberg, pp 3–30Google Scholar
  44. 44.
    Mierzwa M, Pawlus S, Paluch M, Kaminska E, Ngai KL (2008) J Chem Phys 128:044512CrossRefGoogle Scholar
  45. 45.
    Kessairi K, Capaccioli S, Prevosto D, Lucchesi M, Sharifi S, Rolla PA (2008) J Phys Chem B 112:4470CrossRefGoogle Scholar
  46. 46.
    Alegria A, Gomez D, Colmenero J (2002) Macromolecules 35:2030CrossRefGoogle Scholar
  47. 47.
    Roland CM, McGrath KJ, Casalini R (2006) Macromolecules 39:3581CrossRefGoogle Scholar
  48. 48.
    Macedo PB, Moynihan CT, Bose RA (1972) Phys Chem Glasses 13:171Google Scholar
  49. 49.
    Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) J Phys Chem 78:639CrossRefGoogle Scholar
  50. 50.
    Mierzwa M, Paluch M, Rzoska SJ, Ziolo J (2008) J Phys Chem B 112:10383CrossRefGoogle Scholar
  51. 51.
    Plazek DJ, Magill JH (1966) J Chem Phys 45:3038CrossRefGoogle Scholar
  52. 52.
    Magill JH, Plazek DJ (1967) J Chem Phys 46:3757CrossRefGoogle Scholar
  53. 53.
    Ngai KL, Magill JH, Plazek DJ (2000) J Chem Phys 112:1887CrossRefGoogle Scholar
  54. 54.
    Stickel F (1995) Ph.D. Thesis, Mainz University, Germany (Shaker, Aachen)Google Scholar
  55. 55.
    Stickel F, Fischer EW, Richert R (1995) J Chem Phys 102:6251, (1996) J Chem Phys 104:2043CrossRefGoogle Scholar
  56. 56.
    Schneider U, Lunkenheimer P, Brand R, Loidl A (1999) Phys Rev E 59:6924CrossRefGoogle Scholar
  57. 57.
    Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SF (2000) J Appl Phys 88:3113CrossRefGoogle Scholar
  58. 58.
    Rault J (2000) J Non-Cryst Solids 271:177CrossRefGoogle Scholar
  59. 59.
    Casalini R, Roland CM (2002) Phys Rev B 66:180201CrossRefGoogle Scholar
  60. 60.
    Novikov VN, Sokolov AP (2003) Phys Rev E 67:031507CrossRefGoogle Scholar
  61. 61.
    Casalini R, Roland CM (2005) Phys Rev B 71:014210CrossRefGoogle Scholar
  62. 62.
    Roland CM, Casalini R (2005) J Chem Phys 122:134505CrossRefGoogle Scholar
  63. 63.
    Casalini R, Paluch M, Fontanella JJ, Roland CM (2002) J Chem Phys 117:4901CrossRefGoogle Scholar
  64. 64.
    Casalini R, Paluch M, Roland CM (2003) J Chem Phys 118:5701CrossRefGoogle Scholar
  65. 65.
    Casalini R, Paluch M, Roland CM (2003) J Phys Condens Matter 15:S859CrossRefGoogle Scholar
  66. 66.
    Roland CM, Hensel-Bielowka S, Paluch M, Casalini R (2005) Rep Prog Phys 68:1405CrossRefGoogle Scholar
  67. 67.
    Corezzi S, Beiner M, Huth H, Schröter K, Capaccioli S, Casalini R, Fioretto D, Donth E (2002) J Chem Phys 117:2435CrossRefGoogle Scholar
  68. 68.
    Götze W (1999) J Phys Condens Matt 11:A1CrossRefGoogle Scholar
  69. 69.
    Dixon PK (1990) Phys Rev B 42:8179CrossRefGoogle Scholar
  70. 70.
    Hensel-Bielowka S, Paluch M, Ngai KL (2005) J Chem Phys 123:014502CrossRefGoogle Scholar
  71. 71.
    León C, Ngai KL (1999) J Phys Chem B 103:4045CrossRefGoogle Scholar
  72. 72.
    Ngai KL (1999) J Chem Phys 111:3639CrossRefGoogle Scholar
  73. 73.
    Ngai KL, Roland CM (2002) Polymer 43:567CrossRefGoogle Scholar
  74. 74.
    Ngai KL, Lunkenheimer P, Léon C, Schneider U, Brand R, Loidl A (2001) J Chem Phys 115:1405CrossRefGoogle Scholar
  75. 75.
    Ngai KL (2000) J Non-Cryst Solids 275:7CrossRefGoogle Scholar
  76. 76.
    Schönhals A (2001) Europhys Lett 56:815CrossRefGoogle Scholar
  77. 77.
    Schönhals A, Kremer F, Hofmann A, Fischer EW, Schlosser E (1993) Phys Rev Lett 70:3459CrossRefGoogle Scholar
  78. 78.
    Tyagi M, Alegría A, Colmenero J (2005) J Chem Phys 122:244909CrossRefGoogle Scholar
  79. 79.
    Casalini R, Ngai KL, Roland CM (2003) Phys Rev B 68:01420CrossRefGoogle Scholar
  80. 80.
    Ngai KL (1998) J Chem Phys 109:6982CrossRefGoogle Scholar
  81. 81.
    Brand R, Lunkenheimer P, Loidl A (2002) J Chem Phys 116:10386CrossRefGoogle Scholar
  82. 82.
    Ngai KL, Gopalakrishnan TR, Beiner M (2006) Polymer 47:7222–7230CrossRefGoogle Scholar
  83. 83.
    Beiner M, Ngai KL (2005) Macromolecules 38:7033CrossRefGoogle Scholar
  84. 84.
    Bedrov D, Smith GD (2005) Macromolecules 38:10314CrossRefGoogle Scholar
  85. 85.
    Ngai KL, Capaccioli S, Roland CM (2006) Macromolecules 39:8543CrossRefGoogle Scholar
  86. 86.
    Ngai KL (2007) J Non-Cryst Solids 353:4237CrossRefGoogle Scholar
  87. 87.
    Böhmer R, Diezemann G, Geil B, Hinze G, Nowaczyk A, Winterlich M (2006) Phys Rev Lett 97:135701CrossRefGoogle Scholar
  88. 88.
    Nowaczyk A, Geil B, Hinze G, Böhmer R (2006) Phys Rev E 74:041505CrossRefGoogle Scholar
  89. 89.
    Capaccioli S, Prevosto D, Lucchesi M, Rolla PA, Casalini R, Ngai KL (2005) J Non-Cryst Solids 351:2643CrossRefGoogle Scholar
  90. 90.
    Prevosto D, Capaccioli S, Sharifi S, Lucchesi M, Rolla PA (2007) J Non-Cryst Solids 353:4278CrossRefGoogle Scholar
  91. 91.
    Prevosto D, Capaccioli S, Lucchesi M, Rolla PA, Ngai KL (2009) J Non-Cryst Solids 355:705CrossRefGoogle Scholar
  92. 92.
    Ngai KL, Prevosto D, Capaccioli S, Roland CM (2008) J Phys Condens Matter 20:244125CrossRefGoogle Scholar
  93. 93.
    Paluch M, Roland CM, Pawlus S, Ziolo J, Ngai KL (2003) Phys Rev Lett 91:115701CrossRefGoogle Scholar
  94. 94.
    Nogales A, Sanz A, Ezquerra TA (2006) J Non-Cryst Solids 352:4649CrossRefGoogle Scholar
  95. 95.
    Kramarenko VYu, Ezquerra TA, Privalko VP (2001) Phys Rev E 64:051802CrossRefGoogle Scholar
  96. 96.
    Prevosto D, Capaccioli S, Lucchesi M, Rolla PA, Ngai KL (2004) J Chem Phys 120:4808CrossRefGoogle Scholar
  97. 97.
    Ngai KL, Kaminska E, Sekuła M, Paluch M (2005) J Chem Phys 123:204507Google Scholar
  98. 98.
    Capaccioli S, Kessairi K, Prevosto D, Lucchesi M, Ngai KL (2006) J Non-Cryst Solids 352:4643CrossRefGoogle Scholar
  99. 99.
    Ngai KL (2006) J Non-Cryst Solids 352:404CrossRefGoogle Scholar
  100. 100.
    Capaccioli S, Kessairi K, Prevosto D, Lucchesi M, Rolla P (2007) J Phys Condens Matter 19:205133CrossRefGoogle Scholar
  101. 101.
    Capaccioli S, Ngai KL, Shinyashiki N (2007) J Phys Chem B 111:8197CrossRefGoogle Scholar
  102. 102.
    Capaccioli S, Shahin Thayyil M, Ngai KL (2008) J Phys Chem B 112(50):16035CrossRefGoogle Scholar
  103. 103.
    Kaminski K, Kaminska E, Paluch M, Ziolo J, Ngai KL (2006) J Phys Chem B 110:25045CrossRefGoogle Scholar
  104. 104.
    Capaccioli S, Kessairi K, Prevosto D, Lucchesi M, Rolla P (2008) J Phys Chem B 112:4470Google Scholar
  105. 105.
    Ngai KL, Capaccioli S, Shinyashiki N (2008) J Phys Chem B 112:3826CrossRefGoogle Scholar
  106. 106.
    Kaminski K, Kaminska E, Wlodarczyk P, Paluch M, Ziolo J, Ngai KL (2008) J Phys Condens Matter 20:335104CrossRefGoogle Scholar
  107. 107.
    Kaminski K, Kaminska E, Wlodarczyk P, Pawlus S, Kimla D, Kasprzycka A, Paluch M, Ziolo J, Szeja W, Ngai KL (2008) J Phys Chem B 112:12816CrossRefGoogle Scholar
  108. 108.
    Kessairi K, Capaccioli S, Prevosto D, Sharifi S, Rolla PA (2007) J Non-Cryst Solids 353:4273CrossRefGoogle Scholar
  109. 109.
    Prevosto D, Capaccioli S, Sharifi S, Kessairi K, Lucchesi M, Rolla PA (2007) J Non-Cryst Solids 353:4278CrossRefGoogle Scholar
  110. 110.
    Capaccioli S, Kessairi K, Prevosto D, Lucchesi M, Rolla P (2007) J Non-Cryst Solids 353:3984CrossRefGoogle Scholar
  111. 111.
    Brás AR, Noronha JP, Antunes AMM, Cardoso MM, Schönhals A, Affouard F, Dionísio M, Correia NT (2008) J Phys Chem B 112:11087CrossRefGoogle Scholar
  112. 112.
    Nath R, Nowaczyk A, Geil B, Böhmer R (2007) J Non-Cryst Solids 353:3788CrossRefGoogle Scholar
  113. 113.
    Carpentier L, Decressain R, Desprez S, Descamps M (2006) J Phys Chem B 110:457CrossRefGoogle Scholar
  114. 114.
    Johari GP, Powers G, Vij JK (2002) J Chem Phys 116:5908CrossRefGoogle Scholar
  115. 115.
    Johari GP, Goldstein M (1970) J Chem Phys 53:2372. For a recent view, see M. Goldstein, “The past, present, and future of the JohariGoldstein relaxation,”to be published in J. Non-Cryst. Solids (2010 or 2011), Special issue of papers presented in the 6th IDMRCS, Rome, Italy, August 30th–September 4th (2009)CrossRefGoogle Scholar
  116. 116.
    Johari GP (1973) J Chem Phys 58:1766CrossRefGoogle Scholar
  117. 117.
    Johari GP (1976) Ann NY Acad Sci 279:117CrossRefGoogle Scholar
  118. 118.
    Leisen J, Schmidt-Rohr K, Spiess HW (1993) Physica A 201:79CrossRefGoogle Scholar
  119. 119.
    Hoover WG, Ross M (1971) Contemp Phys 12:339CrossRefGoogle Scholar
  120. 120.
    Hoover WG, Ross M, Johnson KW, Henderson D, Barker JA, Brown BC (1970) J Chem Phys 52:4931CrossRefGoogle Scholar
  121. 121.
    Hiwatari Y, Matsuda H, Ogawa T, Ogita N, Ueda A (1974) Prog Theor Phys 52:1105CrossRefGoogle Scholar
  122. 122.
    Chandler D, Weeks JD, Andersen HC (1983) Science 220:787CrossRefGoogle Scholar
  123. 123.
    Hansen JP, McDonald IR (1986) Theory of simple liquids, 2nd edn. Academic, LondonGoogle Scholar
  124. 124.
    Coslovich D, Roland CM (2008) J Phys Chem B 112:1329CrossRefGoogle Scholar
  125. 125.
    Roland CM, Casalini R, Paluch M (2004) J Polym Sci Polym Phys Ed 42:4313CrossRefGoogle Scholar
  126. 126.
    Casalini R, Roland CM (2005) Macromolecules 38:4363CrossRefGoogle Scholar
  127. 127.
    Ngai KL, Plazek DJ, Rendell RW (1997) Rheol Acta 36:307Google Scholar
  128. 128.
    Ngai KL, Schönhals A, Schlosser E (1992) Macromolecules 25:4915CrossRefGoogle Scholar
  129. 129.
    Plazek DJ, Schönhals A, Schlosser E, Ngai KL (1993) J Chem Phys 98:6488CrossRefGoogle Scholar
  130. 130.
    Ngai KL, Plazek DJ (1995) Identification of different modes of molecular motion in polymers that cause thermorheological complexity. Rubber Chem TechRubber Rev 68:376–434CrossRefGoogle Scholar
  131. 131.
    Ngai KL, Fytas G (1986) J Polym Sci Part B Polym Phys 24:1683CrossRefGoogle Scholar
  132. 132.
    Ngai KL, Casalini R, Roland CM (2005) Macromolecules 38:1779CrossRefGoogle Scholar
  133. 133.
    Blochowicz T, Rössler EA (2004) Phys Rev Lett 92:225701CrossRefGoogle Scholar
  134. 134.
    Johari GP, Power G, Vij JK (2002) J Chem Phys 116:5908, J Chem Phys 117:1714CrossRefGoogle Scholar
  135. 135.
    Power G, Johari GP, Vij JK (2003) J Chem Phys 119:435CrossRefGoogle Scholar
  136. 136.
    Joule JP (1867) Mem Manchr Literary Phil Soc 3(3rd series) 292; (1884) The scientific papers of J. P. Joule, Vol 1. Physical Society, London, p 558Google Scholar
  137. 137.
    Nemilov SV, Johari GP (2003) Philos Mag 83:3117CrossRefGoogle Scholar
  138. 138.
    Nemilov SV (1995) Thermodynamics and kinetic aspects of the vitreous state. CRC Press, Boca Raton, (2000) Glass Phys Chem 26:511Y530Google Scholar
  139. 139.
    Struik LCE (1978) Physical aging in amorphous polymers and other materials. Elsevier, AmsterdamGoogle Scholar
  140. 140.
    Johari GP (1982) J Chem Phys 77:4619CrossRefGoogle Scholar
  141. 141.
    Olsen NB (1998) J Non-Cryst Solids 235–237:399CrossRefGoogle Scholar
  142. 142.
    Leheny RL, Nagel SR (1998) Phys Rev B 57:5154CrossRefGoogle Scholar
  143. 143.
    Schneider U, Brand R, Lunkenheimer P, Loidl A (2000) Phys Rev Lett 84:5560CrossRefGoogle Scholar
  144. 144.
    Johari GP, Power G, Vij JK (2002) J Chem Phys 117:1714CrossRefGoogle Scholar
  145. 145.
    Power G, Vij JK, Johari GP (2006) J Chem Phys 124:074509CrossRefGoogle Scholar
  146. 146.
    Etienne S, David L, Duval E, Mermet A, Wypych A, Simeoni G (2006) Solid State Phenomena 115:99CrossRefGoogle Scholar
  147. 147.
    Wypych A, Duval E, Boiteux G, Ulanski J, David L, Mermet A (2005) Polymer 46:12523CrossRefGoogle Scholar
  148. 148.
    Lunkenheimer P, Wehn R, Schneider U, Loidl A (2005) Phys Rev Lett 95:055702CrossRefGoogle Scholar
  149. 149.
    Kaminska E, Kaminski K, Hensel-Bielowka S, Paluch M, Ngai KL (2006) J Non-Cryst Solids 352:4672CrossRefGoogle Scholar
  150. 150.
    Casalini R, Roland CM (2009) Phys Rev Lett 102:035701CrossRefGoogle Scholar
  151. 151.
    Hikima T, Adachi Y, Hanaya M, Oguni M (1995) Phys Rev B 52:3900CrossRefGoogle Scholar
  152. 152.
    Hatase M, Hanaya M, Oguni M (2004) J Non-Cryst Solids 333:129CrossRefGoogle Scholar
  153. 153.
    Sharifi S, Prevosto D, Capaccioli S, Lucchesi M, Paluch M (2007) J Non-Cryst Solids 353:4313–4317CrossRefGoogle Scholar
  154. 154.
    Sharifi S (2008) Ph.D. Thesis, University of Pisa, Pisa, ItalyGoogle Scholar
  155. 155.
    Paluch M, Pawlus S, Hensel-Bielowka S, Kaminski K, Psurek T, Rzoska SJ, Ziolo J, Roland CM (2005) Phys Rev B 72:224205CrossRefGoogle Scholar
  156. 156.
    Corezzi S, Beiner M, Huth H, Schroter K, Capaccioli S, Casalini R, Fioretto D, Donth E (2002) J Chem Phys 117:2435CrossRefGoogle Scholar
  157. 157.
    Hensel-Bielowka S, Ziolo J, Paluch M, Roland CM (2002) J Chem Phys 117:2317CrossRefGoogle Scholar
  158. 158.
    Ngai KL, Habasaki J, León C, Rivera A (2005) Z Phys Chem 219:47CrossRefGoogle Scholar
  159. 159.
    Ngai KL (2004) Philos Mag 84:1341CrossRefGoogle Scholar
  160. 160.
    Dyre J, Olsen B (2003) Phys Rev Lett 91:155703CrossRefGoogle Scholar
  161. 161.
    Pawlus S, Hensel-Bielowka S, Grzybowska K, Ziolo J, Paluch M (2005) Phys Rev B 71:174107CrossRefGoogle Scholar
  162. 162.
    Grzybowska K, Grzybowski A, Paluch M, Cappacioli S (2006) J Chem Phys 125:044904CrossRefGoogle Scholar
  163. 163.
    Grzybowska K, Grzybowski A, Ziolo J, Rzoska SJ, Paluch M (2007) J Phys Condens Matter 19:376105CrossRefGoogle Scholar
  164. 164.
    Ngai KL, Grzybowska K, Grzybowski A, Kaminska E, Kaminski K, Paluch M, Capaccioli S (2008) J Non-Cryst Solids 354:5085CrossRefGoogle Scholar
  165. 165.
    Grzybowska K, Grzybowski A, Paluch M (2008) J Chem Phys 128:134904CrossRefGoogle Scholar
  166. 166.
    Casalini R, Roland CM (2004) Phys Rev B 69:094202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • George Floudas
    • 1
    Email author
  • Marian Paluch
    • 2
  • Andrzej Grzybowski
    • 2
  • K. L. Ngai
    • 3
  1. 1.Dept. PhysicsUniversity of IoanninaIoanninaGreece
  2. 2.Inst. PhysicsUniversity of SilesiaKatowicePoland
  3. 3.CNR-IPCF Associate Dipartimento di FisicaUniversitaà di PisaPisaItaly

Personalised recommendations