Origin of Glass Formation

  • George FloudasEmail author
  • Marian Paluch
  • Andrzej Grzybowski
  • K. L. Ngai
Part of the Advances in Dielectrics book series (ADVDIELECT, volume 1)


Chapter 2 discusses in detail the current understanding of the liquid-to-glass transformation and in particular the importance of the main control parameters that dominate the slow dynamics in glass-forming systems. Developing a solid picture of the main control parameter is of fundamental importance in understanding glass formation. In this chapter, we discuss two recent approaches that lead to a better understanding of molecular dynamics in the vicinity of the liquid-glass “transition”. The first one is based on the newly observed dynamic feature, known as the “thermodynamic scaling”, which stimulates theoretical ideas that suggest appealing perspectives on finding a proper linkage between dynamic and thermodynamic properties as well as a molecular potential responsible for the phenomena near the glass transition. The second approach emphasizes the role of molecular volume and local packing on the glass transition dynamics.


Propylene Carbonate Glass Transition Point Isochoric Heat Capacity Local Packing Thermal Volume Expansivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angell CA (1995) Science 67:1924CrossRefGoogle Scholar
  2. 2.
    Stillinger FH (1995) Science 267:1935CrossRefGoogle Scholar
  3. 3.
    Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  4. 4.
    Cohen MH, Grest GS (1979) Phys Rev B 20:1077CrossRefGoogle Scholar
  5. 5.
    Tölle A (2001) Rep Prog Phys 64:1473CrossRefGoogle Scholar
  6. 6.
    Dreyfus C, Aouadi A, Gapinski J, Matos-Lopes M, Steffen W, Patkowski A, Pick RM (2003) Phys Rev E 68:011204CrossRefGoogle Scholar
  7. 7.
    Casalini R, Roland CM (2004) Phys Rev E 69:062501CrossRefGoogle Scholar
  8. 8.
    Dreyfus C, Le Grand A, Gapinski J, Steffen W, Patkowski A (2004) Eur Phys J B 42:309CrossRefGoogle Scholar
  9. 9.
    Alba-Simionseco C, Cailliaux A, Alegria A, Tarjus G (2004) Europhys Lett 68:58CrossRefGoogle Scholar
  10. 10.
    Pawlus S, Casalini R, Roland CM, Paluch M, Rzoska SJ, Ziolo J (2004) Phys Rev E 70:061501CrossRefGoogle Scholar
  11. 11.
    Roland CM, Hensel-Bielowka S, Paluch M, Casalini R (2005) Rep Prog Phys 68:1405CrossRefGoogle Scholar
  12. 12.
    Hoover WG, Ross M (1971) Contemp Phys 12:339CrossRefGoogle Scholar
  13. 13.
    Casalini R, Roland CM (2007) J Non-Cryst Solids 353:3936CrossRefGoogle Scholar
  14. 14.
    Bailey NP, Pedersen UR, Gnan N, Schrøder TB, Dyre JC (2008) J Chem Phys 129:184507CrossRefGoogle Scholar
  15. 15.
    Bailey NP, Pedersen UR, Gnan N, Schrøder TB, Dyre JC (2008) J Chem Phys 129:184508CrossRefGoogle Scholar
  16. 16.
    Coslovich D, Roland CM (2009) J Chem Phys 130:014508CrossRefGoogle Scholar
  17. 17.
    Williams G (1964) Trans Faraday Soc 60:1556CrossRefGoogle Scholar
  18. 18.
    Naoki M, Endou H, Matsumoto K (1987) J Phys Chem 91:4169CrossRefGoogle Scholar
  19. 19.
    Ferrer ML, Lawrence C, Demirjian BG, Kivelson D, Alba-Simionesco C, Tarjus G (1998) J Chem Phys 109:8010CrossRefGoogle Scholar
  20. 20.
    Casalini R, Roland CM (2005) Phys Rev B 71:014210CrossRefGoogle Scholar
  21. 21.
    Niss K, Alba-Simionesco C (2006) Phys Rev B 74:024205CrossRefGoogle Scholar
  22. 22.
    Niss K, Dalle-Ferrier C, Tarjus G, Alba-Simionesco C (2007) J Phys Condens Matter 19:076102CrossRefGoogle Scholar
  23. 23.
    Alba-Simionesco C, Tarjus G (2006) J Non-Cryst Solids 352:4888CrossRefGoogle Scholar
  24. 24.
    Mpoukouvalas K, Floudas G, Williams G (2009) Macromolecules 42:4690CrossRefGoogle Scholar
  25. 25.
    Boyer RF, Spencer RS (1944) J Appl Phys 15:398CrossRefGoogle Scholar
  26. 26.
    Van Krevelen DW (1990) Properties of polymers. Elsevier, New YorkGoogle Scholar
  27. 27.
    Casalini R, Roland CM (2004) Colloid Polym Sci 283:107CrossRefGoogle Scholar
  28. 28.
    Paluch M, Grzybowska K, Grzybowski A (2007) J Phys Condens Matter 19:205117CrossRefGoogle Scholar
  29. 29.
    Corezzi S, Capaccioli S, Casalini R, Fioretto D, Paluch M, Rolla PA (2000) Chem Phys Lett 320:113CrossRefGoogle Scholar
  30. 30.
    Casalini R, Mohanty U, Roland CM (2006) J Chem Phys 125:014505CrossRefGoogle Scholar
  31. 31.
    Hartwig G (1994) Polymer properties at room and cryogenic temperatures, Chap. 4. Plenum, New YorkGoogle Scholar
  32. 32.
    Roland CM, Feldman JL, Casalini R (2006) J Non-Cryst Solids 352:4895CrossRefGoogle Scholar
  33. 33.
    Grüneisen E (1912) Ann Phys (Leipzig) 39:257Google Scholar
  34. 34.
    Moelwyn-Hughes EA (1951) J Phys Coll Chem 55:1246CrossRefGoogle Scholar
  35. 35.
    Roland CM (2008) In: Bhowmick AK (ed) Current topics in elastomers research, Chap. 24. CRC Press in Taylor & Francis Group, Boca RatonGoogle Scholar
  36. 36.
    Boyer RF, Spencer RS (1944) J Appl Phys 15:398CrossRefGoogle Scholar
  37. 37.
    Van Krevelen DW (1990) Properties of polymers. Elsevier, New YorkGoogle Scholar
  38. 38.
    Casalini R, Roland CM (2005) Phys Rev E 72:031503CrossRefGoogle Scholar
  39. 39.
    Casalini R, Capaccioli S, Roland CM (2006) J Phys Chem B 110:11491CrossRefGoogle Scholar
  40. 40.
    Grzybowski A, Grzybowska K, Zioło J, Paluch M (2006) Phys Rev E 74:041503CrossRefGoogle Scholar
  41. 41.
    Grzybowski A, Grzybowska K, Zioło J, Paluch M (2007) Phys Rev E 76:013502CrossRefGoogle Scholar
  42. 42.
    Williams G, Watts DC (1970) Trans Faraday Soc 66:80CrossRefGoogle Scholar
  43. 43.
    Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) J Chem Phys 99:4201CrossRefGoogle Scholar
  44. 44.
    Ngai KL, Casalini R, Capaccioli S, Paluch M, Roland CM (2005) J Phys Chem B 109:17356CrossRefGoogle Scholar
  45. 45.
    Roland CM, Bair S, Casalini R (2006) J Chem Phys 125:124508CrossRefGoogle Scholar
  46. 46.
    Reiser A, Kasper G, Hunklinger S (2005) Phys Rev B 72:094204CrossRefGoogle Scholar
  47. 47.
    Pedersen UR, Bailey NP, Schrøder TB, Dyre JC (2008) Phys Rev Lett 100:015701CrossRefGoogle Scholar
  48. 48.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, OxfordGoogle Scholar
  49. 49.
    Bardic VY, Malomuzh NP, Sysoev VM (2005) J Mol Liq 120:27CrossRefGoogle Scholar
  50. 50.
    Bardik VY, Shakun KS (2005) Ukr J Phys 50:404Google Scholar
  51. 51.
    Naoki M, Koeda S (1989) J Phys Chem 93:948CrossRefGoogle Scholar
  52. 52.
    Grzybowski A, Paluch M, Grzybowska K (2009) J Phys Chem B 113:7419CrossRefGoogle Scholar
  53. 53.
    Grzybowski A, Haracz S, Paluch M, Grzybowska K (2010) J Phys Chem B 114:11544CrossRefGoogle Scholar
  54. 54.
    Weeks JD, Chandler D, Andersen HC (1971) J Chem Phys 54:5237CrossRefGoogle Scholar
  55. 55.
    Grzybowski A, Paluch M, Grzybowska K, Haracz S (2010) J Chem Phys 133:161101CrossRefGoogle Scholar
  56. 56.
    Paluch M, Haracz S, Grzybowski A, Mierzwa M, Pionteck J, Rivera-Calzada A, Leon C (2010) J Phys Chem Lett 1:987.CrossRefGoogle Scholar
  57. 57.
    Floudas G, Mpoukouvalas K, Papadopoulos P (2006) J Chem Phys 124:074905CrossRefGoogle Scholar
  58. 58.
    Miller RL, Boyer R, Heijboer J (1984) J Polym Sci Polym Phys Ed 22:2021CrossRefGoogle Scholar
  59. 59.
    Floudas G, Stepanek P (1998) Macromolecules 31:6951CrossRefGoogle Scholar
  60. 60.
    Cailliaux A, Alba-Simionesco C, Frick B, Willner L, Goncharenko I (2003) Phys Rev E 67:010802CrossRefGoogle Scholar
  61. 61.
    Mpoukouvalas K, Gomopoulos N, Floudas G, Herrmann C, Hanewald A, Best A (2006) Polymer 47:7170CrossRefGoogle Scholar
  62. 62.
    Everaers R, Sukumaran SK, Grest GS, Svaneborg C, Sivasubramanian A, Kremer K (2004) Science 303:823CrossRefGoogle Scholar
  63. 63.
    Dudowicz J, Freed K, Douglas JF (2005) J Chem Phys 123:111102CrossRefGoogle Scholar
  64. 64.
    Ngai KL, Roland CM (1993) Macromolecules 26:6824CrossRefGoogle Scholar
  65. 65.
    Floudas G, Fytas G, Reisinger T, Wegner G (1999) J Chem Phys 111:9129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • George Floudas
    • 1
    Email author
  • Marian Paluch
    • 2
  • Andrzej Grzybowski
    • 2
  • K. L. Ngai
    • 3
  1. 1.Dept. PhysicsUniversity of IoanninaIoanninaGreece
  2. 2.Inst. PhysicsUniversity of SilesiaKatowicePoland
  3. 3.CNR-IPCF Associate Dipartimento di FisicaUniversitaà di PisaPisaItaly

Personalised recommendations