Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 828))

  • 2913 Accesses

Abstract

We give a brief review of the recently-formulated fluid/gravity correspondence. Originating from the AdS/CFT correspondence, this constitutes a one-to-one map between configurations of a conformal fluid dynamics in \(d\) dimensions and solutions to Einstein’s equations in \(d+1\) dimensions. The map is fully constructive; for a given fluid configuration, it is completely algorithmic to write down the spacetime geometry and deduce its causal properties. In particular, the bulk solutions describe a regular generic, non-uniform and dynamical, black hole which at late times settles down to a stationary planar black hole. We briefly indicate the iterative construction of such solutions, extract the key physical properties, and discuss further generalizations and open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    AdS is a space of constant negative curvature, which introduces a length scale, called the AdS scale \(R_{\rm AdS}\), corresponding to the radius of curvature. The black hole size is then measured in terms of this AdS scale; large black holes have horizon radius \(r_+ > R_{\rm AdS}\).

  2. 2.

    In what follows, the five-sphere of \(\hbox{AdS}_5 \times S^5\) will play a passive role, so we will ignore it and consider the five-dimensional (asymptotically) AdS bulk spacetime only.

  3. 3.

    Note, however, that there are regular solutions which do not fall into the long-wavelength category, such as small black holes in AdS, which correspondingly are not described by fluid configurations.

  4. 4.

    Note that (6.7) does not have any \(\partial_{\mu} T\) terms appearing explicitly, since by implementing the zeroth order stress tensor conservation, we have expressed the temperature derivatives in terms of the velocity derivatives.

  5. 5.

    We use the standard prescription (cf. [3]),

    $$ T^\mu_\nu = -2 \lim_{r \to \infty} r^4 (K^\mu_\nu - \delta^\mu_\nu) $$

    where \(K_{\mu\nu }\) is the extrinsic curvature tensor on a constant-\(r\) surface.

  6. 6.

    Here we quote the stress tensor as written originally in [5]; subsequently, slightly simpler and more general expressions were found; cf. e.g. [19] for a review. (Also, for simplicity we have absorbed an overall factor of \(16\pi G_N^{(5)}\) which would appear in the conventionally defined stress tensor as conjugate to boundary time translations.)

  7. 7.

    Although including higher orders may remedy this discrepancy [21].

References

  1. Baier, R., Romatschke, P., Son, D.T., Starinets, A.O., Stephanov, M.A.: Relativistic viscous hydrodynamics, conformal invariance,and holography. JHEP 0804, 100 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  2. Banerjee, N., Bhattacharya, J., Bhattacharyya, S., Dutta, S., Loganayagam, R., Surowka, P.: Hydrodynamics from charged black branes, arXiv:0809.2596 [hep-th]

    Google Scholar 

  3. Balasubramanian, V., Kraus, P.: A stress tensor for anti-de sitter gravity. Commun. Math. Phys. 208, 413–428 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bhattacharyya, S., Lahiri, S., Loganayagam, R., Minwalla, S.: Large rotating AdS black holes from fluid mechanics. JHEP 0809, 054 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bhattacharyya, S., Hubeny, V.E., Minwalla, S., Rangamani, M.: Nonlinear fluid dynamics from gravity. JHEP 0802, 045 (2008)

    Article  ADS  Google Scholar 

  6. Bhattacharyya, S., Hubeny, V.E., Loganayagam, R., Mandal, G., Minwalla, S., Morita, T., Rangamani, M., Reall, H.S.: Local fluid dynamical entropy from gravity. JHEP 0806, 055 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bhattacharyya, S., Loganayagam, R., Minwalla, S., Nampuri, S., Trivedi, S.P., Wadia, S.R.: Forced fluid dynamics from gravity. JHEP 0902, 018 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bhattacharyya, S., Loganayagam, R., Mandal, I., Minwalla, S., Sharma, A.: Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions. JHEP 0812, 116 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  9. Bhattacharyya, S., Minwalla, S., Wadia, S.R.: The incompressible non-relativistic Navier–Stokes equation from gravity. JHEP 0908, 059 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  10. David, J.R., Mahato, M., Wadia, S.R.: Hydrodynamics from the D1-brane. JHEP 04, 042 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  11. de Haro, S., Solodukhin, S.N., Skenderis, K.: Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence. Commun. Math. Phys. 217, 595–622 (2001)

    Article  ADS  MATH  Google Scholar 

  12. Erdmenger, J., Haack, M., Kaminski, M., Yarom, A.: Fluid dynamics of R-charged black holes. JHEP 0901, 055 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  13. Haack, M., Yarom, A.: Nonlinear viscous hydrodynamics in various dimensions using AdS/CFT. JHEP 10, 063 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  14. Janik, R.A., Peschanski, R.: Asymptotic perfect fluid dynamics as a consequence of ads/cft. Phys. Rev. D73, 045013 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  15. Kanitscheider, I., Skenderis, K.: Universal hydrodynamics of non-conformal branes. JHEP 04, 062 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. Loganayagam, R.: Entropy current in conformal hydrodynamics. JHEP 0805, 087 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Muronga, A.: Causal theories of dissipative relativistic fluid dynamics for nuclear collisions. Phys. Rev. C69, 034903 (2004)

    Article  ADS  Google Scholar 

  18. Policastro, G., Son, D.T., Starinets, A.O.: The shear viscosity of strongly coupled \(\hbox{N}=4\) supersymmetric yang-mills plasma. Phys. Rev. Lett. 87, 081601 (2001)

    Article  ADS  Google Scholar 

  19. Rangamani, M.: Gravity and hydrodynamics: lectures on the fluid–gravity correspondence. Class. Quant. Grav. 26, 224003 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  20. Rangamani, M., Ross, S.F., Son, D.T., Thompson, E.G.: Conformal non-relativistic hydrodynamics from gravity. JHEP 0901, 075 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Romatschke, P.: Relativistic viscous fluid dynamics and non-equilibrium entropy, arXiv:0906.4787 [hep-th]

    Google Scholar 

  22. Son, D.T., Starinets, A.O.: Viscosity, black holes, and quantum field theory. Ann. Rev. Nucl. Part. Sci. 57, 95 (2007)

    Article  ADS  Google Scholar 

  23. Van Raamsdonk, M.: Black hole dynamics from atmospheric science. JHEP 05, 106 (2008)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank my collaborators, Sayantani Bhattacharyya, R. Loganayagam, Gautam Mandal, Shiraz Minwalla, Takeshi Morita, Harvey Reall, Mukund Rangamani, and Mark Van Raamsdonk for marvelous collaborations on various aspects of fluid dynamics. I would also like to thank the participants of the Fifth Aegean summer school for their enthusiasm and questions, and the organizers, especially Lefteris Papantonopoulos, for putting together an excellent summer school. This work was supported in part by STFC Rolling grant and by the National Science Foundation under the Grant No. NSF PHY05-51164.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika E. Hubeny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hubeny, V.E. (2011). Fluid Dynamics from Gravity. In: Papantonopoulos, E. (eds) From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence. Lecture Notes in Physics, vol 828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04864-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04864-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04863-0

  • Online ISBN: 978-3-642-04864-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics