Advertisement

Adaptive Cascade

  • S. RassEmail author
  • C. KollmitzerEmail author
Chapter
  • 1.8k Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 797)

Abstract

Quantum cryptographic key exchange is a promising technology for future secret transmission, which avoids computational infeasibility assumptions, while (almost) not presuming pre-shared secrets to be available in each peer’s machine. Nevertheless, a modest amount of pre-shared secret information is required in adjacent link devices, but this information is only needed for authentication purposes. So quantum key distribution cannot create keys from nothing, rather it is a method of key expansion. The remarkable feature of quantum cryptography is its ability to detect eavesdropping by the incident of an unnaturally high quantum bit error rate. On the other hand, it has no defense against person-in-the-middle attacks by itself, which is why authentication is of crucial importance.

Keywords

Bayesian Network Poisson Process Intensity Parameter Error Pattern Bayesian Belief Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barron, A., Schervish, M.J., Wasserman, L.: The consistency of posterior distributions in nonparametric problems. Ann. Stat. 27(2), 536–561 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bollerslev, T., Engle, R.F., Nelson, D.B.: Handbook of Econometrics, Vol. IV, Chap. 49: ARCH Models, pp. 2959–3038. Elsevier Science B.V., Amsterdam (1994)Google Scholar
  4. 4.
    Borgelt, C., Kruse, R.: Graphical Models – Methods for Data Analysis and Mining. John Wiley & Sons, UK (2002)Google Scholar
  5. 5.
    Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In: Heile-Beth, T (ed.) EUROCRYPT. Springer, New York, pp. 410–423 (1993)Google Scholar
  6. 6.
    Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, New York (1996)Google Scholar
  7. 7.
    Buntine, W.L.: Chain graphs for learning. In: Besnard, P. and Hanks, S. (eds.) Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA., pp. 46–54 (1995)Google Scholar
  8. 8.
    Chickering, D.M.: Learning bayesian networks is NP-complete. In: D. Fisher, H.J. Lenz (eds.) Learning from Data: Artificial Intelligence and Statistics V, Chap. 12, pp. 121–130. Springer-Verlag New York (1996)Google Scholar
  9. 9.
    Cooper, G.F.: The computational complexity of probabilistic inference using bayesian belief networks (research note). Artif. Intell. 42(2–3), 393–405 (1990)zbMATHCrossRefGoogle Scholar
  10. 10.
    Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Networks and Expert Systems. Springer, New York (1999)Google Scholar
  11. 11.
    Dagum, P., Chavez, R.M.: Approximating probabilistic inference in bayesian belief networks. IEEE Trans. Pattern Anal. Mach. Intell. 15(3), 246–255 (1993). DOI http://dx.doi.org/10.1109/34.204906 Google Scholar
  12. 12.
    Dagum, P., Luby, M.: Approximating probabilistic inference in bayesian belief networks is NP-hard. Artif. Intell. 60(1), 141–153 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Diaconis, P., Freedman, D.: On the consistency of bayes estimates. Ann. Stat. 14(1), 1–26 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dobson, A.J.: An introduction to generalized linear models, 2nd edn. Chapman & Hall, CRC (2002)zbMATHGoogle Scholar
  15. 15.
    Doucet, A. (ed.): Sequential Monte Carlo Methods in Practice. Springer, New York (2001)Google Scholar
  16. 16.
    Faraway, J.J.: Extending the Linear Model with R. Chapman & Hall/CRC, Boca Ration (2006)Google Scholar
  17. 17.
    Gilbert, G., Hamrick, M.: Practical quantum cryptography: A comprehensive analysis (part one) (2000). URL http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/00%09027
  18. 18.
    Gouriéroux, C.: ARCH Models and Financial Applications. Springer, New York (1997)Google Scholar
  19. 19.
    Grandell, J.: Doubly Stochastic Poisson Processes. Springer, New York (1976)Google Scholar
  20. 20.
    Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Myers Kadie, C.: Dependency networks for inference, collaborative filtering, and data visualization. J. Mach. Learn. Res. 1, 49–75 (2000)CrossRefGoogle Scholar
  21. 21.
    Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: The combination of knowledge and statistical data. In: KDD Workshop, pp. 85–96 (1994)Google Scholar
  22. 22.
    Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modeling of Spatial Point Patterns. Wiley, Chichestor (2008)Google Scholar
  23. 23.
    Kariya, T., Kurata, H.: Generalized Least Squares. Wiley, Chichestor (2004)CrossRefGoogle Scholar
  24. 24.
    Kingman, J.: Poisson Processes. Oxford Science Publications, Oxford, UK (1993)Google Scholar
  25. 25.
    Larrañaga, P., Poza, M., Murga, R., Kuijpers, C.: Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE J. Pattern An. Mach. Intell. 18(9), 912–926 (1996)CrossRefGoogle Scholar
  26. 26.
    Lauritzen, S.L.: Graphical Models. Oxford Statistical Science Series 17. Oxford Science Publications, New York (1996)Google Scholar
  27. 27.
    Lessiak, K., Kollmitzer, C., Schauer, S., Pilz, J., Rass, S.: Statistical analysis of QKD networks in real-life environments. In: Proceedings of the Third International Conference on Quantum, Nano and Micro Technologies (2009). (to appear)Google Scholar
  28. 28.
    Lindsey, J.K.: Applying Generalized Linear Models. Springer, New York (1997)Google Scholar
  29. 29.
    Mason, R.L.: Statistical Design and Analysis of Experiments with Applications to Engineering and Science. Series in Probability and Statistics. Wiley, New York (2003)Google Scholar
  30. 30.
    McCullagh, P., Nelder, J.: Generalized Linear Models, 2nd edn. Monographs on Statistics and Applied Probability 37. Chapman & Hall, London (1989)zbMATHGoogle Scholar
  31. 31.
    Pankratz, A.: Forecasting with Univariate Box-Jenkins Models. Wiley, New York (1983)CrossRefGoogle Scholar
  32. 32.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA (1988)Google Scholar
  33. 33.
    Pitman, J.: Probability. Springer, New York (2000)Google Scholar
  34. 34.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, New York (1992)zbMATHGoogle Scholar
  35. 35.
    Rasch, D., Herrendörfer, G., Bock, J., Busch, K.: Verfahrensbibliothek, Versuchsplanung und -auswertung. Deutscher Landwirtschaftsverlag, Berlin (1978)Google Scholar
  36. 36.
    Ripley, B.D.: Stochastic Simulation. Wiley, New York (1987)CrossRefGoogle Scholar
  37. 37.
    Robert, C.P.: The Bayesian Choice. Springer-Verlag, New York (2001)Google Scholar
  38. 38.
    Ross, S.M.: Stochastic Processes. Series in Probability and Mathematical Statistics. Wiley, New York (1983)Google Scholar
  39. 39.
    Sherman, J., Morrison, W.J.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Statistics 21, 124–127 (1950)zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Štulajter, F.: Predictions in Time Series Using Regression Models. Springer, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.System Security Research Group, Institute of Applied InformaticsUniversitaet KlagenfurtKlagenfurtAustria
  2. 2.Safety & Security Department, Quantum TechnologiesAIT Austrian Institute of Technology GmbHKlagenfurtAustria

Personalised recommendations