Quantum Key Distribution

Part of the Lecture Notes in Physics book series (LNP, volume 797)


In this chapter a complete QKD protocol is presented, starting from the transmission via the quantum channel up to the communication over the public channel. The protocol described here is the BB84 protocol, named after Bennett and Brassard [5]. There are other protocols like the B92 protocol [3], the six-state protocol [8], the SARG protocol [19] and the Ekert protocol [10], which are not discussed here. We are focusing on BB84, the most known QKD protocol.


Hash Function Quantum Channel Quantum Cryptography Public Channel BB84 Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ardehali, M., Chau, H.F., Lo, H.K.: Efficient quantum key distribution (1998). URL
  2. 2.
    Assche, G.V.: Quantum Cryptography and Secret-Key Distillation. Cambridge University Press, New York, USA (2006)CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992). DOI 10.1103/PhysRevLett.68.3121zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.A.: Experimental quantum cryptography. J. Cryptology 5(1), 3–28 (1992)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G.: Quantum cryptography : Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179 (1984)Google Scholar
  6. 6.
    Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)zbMATHCrossRefGoogle Scholar
  7. 7.
    Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In: EUROCRYPT, pp. 410–423 (1993)Google Scholar
  8. 8.
    Bruss, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett 81(14), 3018–3021 (1998)CrossRefADSGoogle Scholar
  9. 9.
    Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991). DOI 10.1103/PhysRevLett.67.661zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Gilbert, G., Hamrick, M.: Practical quantum cryptography: A comprehensive analysis (part one) (2000). URL
  12. 12.
    Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Lo, H.K., Chau, H.F., Ardehali, M.: Efficient quantum key distribution scheme and proof of its unconditional security. Journal of Cryptology 18, 133 (2005). URL
  14. 14.
    Lütkenhaus, N.: Estimates for practical quantum cryptography. Phys. Rev. A 59, 3301 (1999). URL
  15. 15.
    Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052,304 (2000). DOI 10.1103/PhysRevA.61.052304CrossRefGoogle Scholar
  16. 16.
    Meyer, T., Kampermann, H., Kleinmann, M., Bru, D.: Finite key analysis for symmetric attacks in quantum key distribution. Phys. Rev. A 74(4), 042,340 (2006)CrossRefGoogle Scholar
  17. 17.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000). URL
  18. 18.
    Renner, R.: Security of Quantum Key Distribution. Ph.D. thesis, Swiss Federal Institute of TechnologyGoogle Scholar
  19. 19.
    Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulses implementations. Phy. Rev. Lett. 92(5), 057,901 (2004)Google Scholar
  20. 20.
    Scarani, V., Renner, R.: Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100(20), 200,501 (2008)CrossRefGoogle Scholar
  21. 21.
    Smith, G., Renes, J.M., Smolin, J.A.: Better codes for BB84 with one-way post-processing (2006). URL
  22. 22.
    Tang, X., Ma, L., Mink, A., Nakassis, A., Xu, H., Hershman and J. Bienfang, B., Su, D., Boisvert, R.F., Clark, C., Williams, C.: Quantum key distribution system operating at sifted-key rate over 4 Mbit/s. In: Quantum Information and Computation IV., Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, Vol. 6244 (2006). DOI 10.1117/12.664455Google Scholar
  23. 23.
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Xu, H., Ma, L., Mink, A., Hershman, B., Tang, X.: 1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm. Optics Express 15, 7247–7260 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Safety & Security Department, Quantum TechnologiesAIT Austrian Institute of Technology GmbHKlagenfurtAustria

Personalised recommendations