Skip to main content

WiFi Localization System Using Fuzzy Rule-Based Classification

  • Conference paper
Computer Aided Systems Theory - EUROCAST 2009 (EUROCAST 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5717))

Included in the following conference series:

Abstract

The framework of this paper is robot localization inside buildings using WiFi signal strength measure. This localization is usually made up of two phases: training and estimation stages. In the former the WiFi signal strength of all visible Access Points (APs) are collected and stored in a database or Wifi map, while in the latter the signal strengths received from all APs at a certain position are compared with the WiFi map to estimate the robot location. This work proposes the use of Fuzzy Rule-based Classification in order to obtain the robot position during the estimation stage, after a short training stage where only a few significant WiFi measures are needed. As a result, the proposed method is easily adaptable to new environments where triangulation algorithms can not be applied since the AP physical location is unknown. It has been tested in a real environment using our own robotic platform. Experimental results are better than those achieved by other classical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Want, R., Hopper, A., Falco, V., Gibbons, J.: The active badge location system. ACM Transactions on Information Systems 10, 91–102 (1992)

    Article  Google Scholar 

  2. Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., Shafer, S.: Multi-camera multi-person tracking for easy living. In: Proc. of 3rd IEEE International Workshop on Visual Surveillance, pp. 3–10 (2002)

    Google Scholar 

  3. Priyantha, N., Chakraborthy, A., Balakrishnan, H.: The cricket location support system. In: Proc. of the 6th ACM MobiCom, pp. 155–164 (2002)

    Google Scholar 

  4. Barber, R., Mata, M., Boada, M., Armingol, J., Salichs, M.: A perception system based on laser information for mobile robot topologic navigation. In: Proc. of 28th Annual Conference of the IEEE Industrial Electronics Society, pp. 2779–2784 (2002)

    Google Scholar 

  5. Bahl, P., Padmanabhan, V.: Radar: A, in-building rf-based user location and tracking system. In: Proc. of the IEEE Infocom, pp. 775–784 (2000)

    Google Scholar 

  6. LaMarca, A., et al.: Place lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Enge, P., Misra, P.: Special issue on gps: The global positioning system. In: Proc. of the IEEE, vol. 87, pp. 3–172 (1999)

    Google Scholar 

  8. Serrano, O., Cañas, J., Matellán, V., Rodero, L.: Robot localization using wifi signal without intensity map. In: Proc. of the V Workshop Agentes Físicos (WAF 2004), pp. 79–88 (2004)

    Google Scholar 

  9. Howard, A., Siddiqi, S., Sukhatme, G.: An experimental study of localization using wireless ethernet. In: Proc. of the International Conference on Field and Service Robotics (2003)

    Google Scholar 

  10. Ladd, A., Bekris, K., Rudys, A., Marceu, G., Kavraki, L., Wallach, D.: Robotics-based location sensing using wireless ethernet. In: Proc. of the MOBICOM 2002 (2002)

    Google Scholar 

  11. Youssef, M., Agrawala, A., Shankar, A.: Wlan location determination via clustering and probability distributions. In: Proc. of the IEEE PerCom 2003 (2003)

    Google Scholar 

  12. Sotelo, M.A., Ocaña, M., Bergasa, L.M., Flores, R., Marrón, M., García, M.A.: Low level controller for a pomdp based on wifi observations. Robot. Auton. Syst. 55(2), 132–145 (2007)

    Article  Google Scholar 

  13. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Parts I, II, and III. Information Sciences 8, 8, 9, 199–249, 301–357, 43–80 (1975)

    MathSciNet  MATH  Google Scholar 

  15. Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic systems. IEEE Transactions on Computers 26(12), 1182–1191 (1977)

    Article  MATH  Google Scholar 

  16. Wang, L.X.: Fuzzy systems are universal approximators. In: First IEEE Conference on Fuzzy Systems, San Diego, pp. 1163–1169 (1992)

    Google Scholar 

  17. Alonso, J.M., Guillaume, S., Magdalena, L.: Kbct: A knowledge management tool for fuzzy inference systems. In: Free software under GPL license (2003), http://www.mat.upm.es/projects/advocate/kbct.htm

  18. Alonso, J.M., Magdalena, L., Guillaume, S.: HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism. International Journal of Intelligent Systems 23(7), 761–794 (2008)

    Article  MATH  Google Scholar 

  19. Ruspini, E.H.: A new approach to clustering. Information and Control 15(1), 22–32 (1969)

    Article  MATH  Google Scholar 

  20. Hüllermeier, E.: Fuzzy methods in machine learning and data mining: Status and prospects. Fuzzy Sets and Systems 156, 387–406 (2005)

    Article  MathSciNet  Google Scholar 

  21. Ichihashi, H., Shirai, T., Nagasaka, K., Miyoshi, T.: Neuro-fuzzy ID3: A method of inducing fuzzy decision trees with linear programming for maximizing entropy and an algebraic method for incremental learning. Fuzzy Sets and Systems 81, 157–167 (1996)

    Article  MathSciNet  Google Scholar 

  22. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alonso, J.M., Ocaña, M., Sotelo, M.A., Bergasa, L.M., Magdalena, L. (2009). WiFi Localization System Using Fuzzy Rule-Based Classification. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2009. EUROCAST 2009. Lecture Notes in Computer Science, vol 5717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04772-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04772-5_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04771-8

  • Online ISBN: 978-3-642-04772-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics