Skip to main content

On the Success Rate of Crossover Operators for Genetic Programming with Offspring Selection

  • Conference paper
Computer Aided Systems Theory - EUROCAST 2009 (EUROCAST 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5717))

Included in the following conference series:

Abstract

Genetic programming is a powerful heuristic search technique that is used for a number of real world applications to solve amongst others regression, classification, and time-series forecasting problems. A lot of progress towards a theoretic description of genetic programming in form of schema theorems has been made, but the internal dynamics and success factors of genetic programming are still not fully understood. In particular, the effects of different crossover operators in combination with offspring selection are largely unknown.

This contribution sheds light on the ability of well-known GP crossover operators to create better offspring when applied to benchmark problems. We conclude that standard (sub-tree swapping) crossover is a good default choice in combination with offspring selection, and that GP with offspring selection and random selection of crossover operators can improve the performance of the algorithm in terms of best solution quality when no solution size constraints are applied.

The work described in this paper was done within HEUREKA!, the Josef Ressel center for heuristic optimization sponsored by the Austrian Research Promotion Agency (FFG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Affenzeller, M., Wagner, S.: Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In: Adaptive and Natural Computing Algorithms. Springer Computer Series, pp. 218–221. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Affenzeller, M., Winkler, S.M., Wagner, S.: Effective allele preservation by offspring selection: An empirical study for the TSP. International Journal of Simulation and Process Modelling (2009) (accepted to appear)

    Google Scholar 

  3. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, ch. 3, pp. 47–74. MIT Press, Cambridge (1994)

    Google Scholar 

  4. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)

    Google Scholar 

  5. Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  6. Kronberger, G., Winkler, S., Affenzeller, M., Wagner, S.: On crossover success rate in genetic programming with offspring selection. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) Genetic Programming, pp. 232–243. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Langdon, W.B.: Size fair and homologous tree genetic programming crossovers. Genetic Programming and Evolvable Machines 1(1/2), 95–119 (2000)

    Article  MATH  Google Scholar 

  8. Langdon, W.B., Banzhaf, W.: Repeated patterns in genetic programming. Natural Computing (2008); Published online: May 26, 2007

    Google Scholar 

  9. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  10. Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evolutionary Computation 4(3), 274–283 (2000)

    Article  Google Scholar 

  11. Murphy, G., Ryan, C.: Exploiting the path of least resistance in evolution. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and evolutionary computation, Atlanta, GA, USA, July 12-16, pp. 1251–1258. ACM, New York (2008)

    Google Scholar 

  12. Murphy, G., Ryan, C.: A simple powerful constraint for genetic programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 146–157. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. O’Reilly, U.-M., Oppacher, F.: Hybridized crossover-based search techniques for program discovery. In: Proceedings of the 1995 World Conference on Evolutionary Computation, Perth, Australia, 29 November -1 December, vol. 2, pp. 573–578. IEEE Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  14. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Poli, R., Langdon, W.B.: On the search properties of different crossover operators in genetic programming. In: Genetic Programming 1998: Proceedings of the Third Annual Conference, University of Wisconsin, Madison, Wisconsin, USA, July 22-25, pp. 293–301. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  16. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu.com (2008)

    Google Scholar 

  17. Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-swapping crossover: part I. Evol. Comput. 11(1), 53–66 (2003)

    Article  Google Scholar 

  18. Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-swapping crossover: part II. Evol. Comput. 11(2), 169–206 (2003)

    Article  Google Scholar 

  19. Poli, R., McPhee, N.F., Rowe, J.E.: Exact schema theory and markov chain models for genetic programming and variable-length genetic algorithms with homologous crossover. Genetic Programming and Evolvable Machines 5(1), 31–70 (2004)

    Article  Google Scholar 

  20. Poli, R., Rowe, J.E., Stephens, C.R., Wright, A.H.: Allele diffusion in linear genetic programming and variable-length genetic algorithms with subtree crossover. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 212–227. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Soule, T., Foster, J.A.: Code size and depth flows in genetic programming. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, CA, USA, July 13-16, pp. 313–320. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kronberger, G., Winkler, S., Affenzeller, M., Beham, A., Wagner, S. (2009). On the Success Rate of Crossover Operators for Genetic Programming with Offspring Selection. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory - EUROCAST 2009. EUROCAST 2009. Lecture Notes in Computer Science, vol 5717. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04772-5_102

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04772-5_102

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04771-8

  • Online ISBN: 978-3-642-04772-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics