Web Image Retrieval for Abstract Queries Using Text and Image Information

  • Kazutaka Shimada
  • Suguru Ishikawa
  • Tsutomu Endo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5839)


In this paper, we propose a method for image retrieval on the web. In this task, we focus on abstract words that do not directly link to images that we want. For example, a user might use a query “summer” to retrieve images of “fireworks” or “a white sand beach with the sea”. In this case retrieval systems need to infer direct words for the images from the abstract query of the user. In our method, we extract related words about a query from the web first. Second, we retrieve images from the web by using the extracted words. Then, a user selects relevant images from the retrieved images. Next, the system computes a similarity between selected images and other images and ranks the images on the basis of the similarity. We use the Earth Mover’s Distance as the similarity. The experimental result shows the effectiveness of our method that uses text and image information for the image retrieval process.


Image retrieval Abstract queries Text and image Feedback 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kato, M., Ohshima, H., Oyama, S., Tanaka, K.: “likely” image search: Web image search using term sets representing typical features extracted from social tagging information. In: Proceedings of Data Engineering Workshop (DEWS 2008), IEICE (2008)Google Scholar
  2. 2.
    Freng, Y., Lapata, M.: Automatic image annotation using auxiliary text information. In: Proceedings of ACL 2008: HLT, Columbus, Ohio, June 2008, pp. 272–280. Association for Computational Linguistics (2008)Google Scholar
  3. 3.
    Gudivada, V., Raghavan, V.: Content-based image retrieval-systems. IEEE Comput. 28(9), 18–22 (1995)CrossRefGoogle Scholar
  4. 4.
    Kushima, K., Akama, H., Konya, S., Yamamuro, M.: Content based image retrieval techniques based on image features. Transactions of Information Processing Society of Japan 40(SIG3(TOD1), 171–184 (1999)Google Scholar
  5. 5.
    Sezaki, N., Kise, K.: Tagging system using co-occurrence of tags and similar images. In: Proceedings of Data Engineering Workshop (DEWS 2008). IEICE (2008)Google Scholar
  6. 6.
    Barthel, K.U., Richter, S., Goyal, A., Fllmann, A.: Improved image retrieval using visual sorting and semi-automatic semantic categorization of images. In: MMIU 2008, VISIGRAPP 2008 (2008)Google Scholar
  7. 7.
    Rui, Y., Huang, T.S., Mehrotra, S.: Relevance feedback techniques in interactive content-based image retrieval. In: Proceedings of Storage and Retrieval of Image and Video Databases VI (SPIE), pp. 25–36 (1998)Google Scholar
  8. 8.
    Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ikehara, S., Miyazaki, M., Shirai, S., Yokoo, A., Nakaiwa, H., Ogura, K., Ooyama, Y., Hayashi, Y. (eds.): Goi-Taikei. A Japanese Lexicon. Iwanami Shoten (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kazutaka Shimada
    • 1
  • Suguru Ishikawa
    • 1
  • Tsutomu Endo
    • 1
  1. 1.Department of Artificial IntelligenceKyushu Institute of TechnologyFukuokaJapan

Personalised recommendations