Advertisement

Finding ‘Lucy in Disguise’: The Misheard Lyric Matching Problem

  • Nicholas Ring
  • Alexandra L. Uitdenbogerd
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5839)

Abstract

We investigated methods for music information retrieval systems where the search term is a portion of a misheard lyric. Lyric data presents its own unique challenges that are different to related problems such as name search. We compared three techniques, each configured for local rather than global matching: edit distance, Editex, and SAPS-L — a technique derived from Syllable Alignment Pattern Searching. Each technique was selected based on effectiveness at approximate pattern matching in related fields. Local edit distance and Editex performed comparably as evaluated with mean average precision and mean reciprocal rank. SAPS-L’s effectiveness varied between measures.

Keywords

Average Precision Edit Distance Mean Average Precision Compound Word Audio Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bello, J.P., Chew, E. (eds.): International Conference on Music Information Retrieval, September 2008, vol. 9 (2008)Google Scholar
  2. 2.
    Büttcher, S., Clarke, C.L.A., Yeung, P.C.K., Soboroff, I.: Reliable information retrieval evaluation with incomplete and biased judgements. In: SIGIR 2007: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 63–70. ACM, New York (2007)Google Scholar
  3. 3.
    Gong, R., Chan, T.K.Y.: Syllable alignment: A novel model for phonetic string search. IEICE - Trans. Inf. Syst. E89-D(1), 332–339 (2006)CrossRefGoogle Scholar
  4. 4.
    Harman, D.: Overview of the second text retrieval conference (TREC-2). Information Processing and Management 31(3), 271–289 (1995)CrossRefGoogle Scholar
  5. 5.
    Hosoya, T., Suzuki, M., Ito, A., Makino, S.: Lyrics recognition from a singing voice based on finite state automaton for music information retrieval. In: Buyoli, C.L., Loureiro, R. (eds.) International Conference on Music Information Retrieval, October 2004, vol. 5, pp. 532–535 (2004)Google Scholar
  6. 6.
    Kleedorfer, F., Knees, P., Pohle, T.: Oh oh oh whoah! towards automatic topic detection in song lyrics. In: Bello, Chew (eds.) [1], pp. 287–292Google Scholar
  7. 7.
    Knees, P., Schedl, M., Widmer, G.: Multiple lyrics alignment: Automatic retrieval of song lyrics. In: Proceedings of 6th International Conference on Music Information Retrieval (ISMIR 2005), London, UK, pp. 564–569 (2005)Google Scholar
  8. 8.
    Kondrak, G., Dorr, B.: Identification of confusable drug names: A new approach and evaluation methodology. In: Proceedings of 21st International Conference on Computer Linguistics (COLING 2004), Geneva, Switzerland, pp. 952–958 (2004)Google Scholar
  9. 9.
    Logan, B., Kositsky, A., Moreno, P.: Semantic analysis of song lyrics. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 827–830. IEEE, Los Alamitos (2004)Google Scholar
  10. 10.
    Manning, C.D., Schutze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  11. 11.
    Mayer, R., Neumayer, R., Rauber, A.: Rhyme and style features for musical genre categorisation by song lyrics. In: Bello, Chew (eds.) [1], pp. 337–342Google Scholar
  12. 12.
    Mellody, M., Bartsch, M.A., Wakefield, G.H.: Analysis of vowels in sung queries for a music information retrieval system. Journal of Intelligent Information Systems 21(1), 35–52 (2003)CrossRefGoogle Scholar
  13. 13.
    Müller, M., Kurth, F., Damm, D., Fremerey, C., Clausen, M.: Lyrics-based audio retrieval and multimodal navigation in music collections. In: Kovács, L., Fuhr, N., Meghini, C. (eds.) ECDL 2007. LNCS, vol. 4675, pp. 112–123. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Neumayer, R., Rauber, A.: Integration of text and audio features for genre classification in music information retrieval. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 724–727. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Skiena, S.: The Algorithm Design Manual. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  16. 16.
    Suzuki, M., Hosoya, T., Ito, A., Makino, S.: Music information retrieval from a singing voice using lyrics and melody information. EURASIP Journal on Advances in Signal Processing 2007 (2007)Google Scholar
  17. 17.
    Yaguchi, Y., Oka, R.: Song wave retrieval based on frame-wise phoneme recognition. In: Lee, G.G., Yamada, A., Meng, H., Myaeng, S.-H. (eds.) AIRS 2005. LNCS, vol. 3689, pp. 503–509. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Zobel, J., Dart, P.: Phonetic string matching: Lessons from information retrieval. In: Proceedings of the ACM-SIGIR Conference on Research and Development in Information Retrieval, Zurich, Switzerland, pp. 166–173 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nicholas Ring
    • 1
  • Alexandra L. Uitdenbogerd
    • 1
  1. 1.School of Computer Science and Information TechnologyRMIT UniversityMelbourneAustralia

Personalised recommendations