Skip to main content

Volcanic Natural Dams Associated with Sector Collapses: Textural and Sedimentological Constraints on Their Stability

  • Chapter
  • First Online:
Natural and Artificial Rockslide Dams

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 133))

Abstract

The collapse of a volcanic edifice can enhance several secondary effects, including the formation of one or more natural dams. Their duration depends on the volume of the obstructing mass and on its textural characteristics. A block facies of a debris avalanche produces “durable” dams, whereas a mixed facies is easily eroded after overflowing. Analysis of the sedimentological characteristics of different volcaniclastic deposits that formed natural dams indicates that low sorting and coarse grain-size (but significant clay content) can promote a longer duration of a natural dam. It appear that a –1 phi mean grain-size represents the limit between volcanic natural dams, which last just few days (Md >–1 phi) from those lasting more that 1 year or are still existing (Md <–1 phi). By considering the relation between M/G (M: matrix, G: gravel) and S+C/C (S: silt; C: clay) it seems that for a M/G lower than 1, there is an inverse relation between mud content and dam duration. For dams formed exclusively of fine material (phi less than –1, with comparable fine fraction), the stability decreases as matrix content increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgia, A. (1994) Dynamic basis of volcanic spreading, Journal of Geophysical Research 99, 17791–17804.

    Article  Google Scholar 

  2. Capra, L. (2007) Volcanic natural dams: Identification, stability and secondary effects, Natural Hazards 43, 45–61.

    Article  Google Scholar 

  3. Capra, L. and Macías, J.L. (2002) The cohesive Naranjo debris flow deposit (10 km3): A dam breakout flow derived from the pleistocene debris-avalanche deposit of Nevado de Colima volcano (México), Journal of Volcanology and Geothermal Research 117, 213–235.

    Article  Google Scholar 

  4. Capra, L. and Macias, J.L. (2000) Pleistocene cohesive debris flows at Nevado de Toluca Volcano, central Mexico, Journal of Volcanology and Geothermal Research 102, 149–167.

    Article  Google Scholar 

  5. Capra, L. (2000) Colapsos de Edificios Volcánicos: Transformación de Avalanchas de Escombros en Flujos de Escombros Cohesivos. Los casos del Monte Santa Elena (EEUU), Nevado de Toluca y Nevado de Colima (México). Universidad Nacional Autónoma de México, Mexico City, PhD Thesis, 180 pp.

    Google Scholar 

  6. Carrasco-Nuñez, G., Vallance, J.W. and Rose, W.I. (1993) A voluminous avalanche-induced lahar from Citlaltepetl volcano, Mexico: Implications for hazard assessment, Journal of Volcanology and Geothermal Research 59, 35–46.

    Article  Google Scholar 

  7. Clavero, J.E., Sparks, R.S.J. and Huppert, H.E. (2002) Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile, Bulletin of Volcanology 64, 40–54.

    Article  Google Scholar 

  8. Cortes, A., Macías, J.L., Capra, L. and Garduño, V.H. (2009) Sector collapse of the SW flank of Volcán de Colima, México: The 3,600 yr BP La Lumbre-Los Ganchos debris avalanche and associated debris flows, Journal of Volcanology and Geothermal Research 197, 52–66.

    Article  Google Scholar 

  9. Costa, J.E. (1988) Floods from dam failures, in V.R. Baker, R.C. Kochel and P.C. Patton (eds.), Flood Geomorphology. Wiley, New York, NY, pp. 439–463.

    Google Scholar 

  10. Costa, J.E. and Shuster, R.L. (1988) The formation and failure of natural dams, Geological Society of America Bulletin 100, 1054–1068.

    Article  Google Scholar 

  11. Crowley, J.K. and Zimbelman, D.R. (1997) Mapping hydrothermally altered rocks on Mount Rainier, Washington, with Airbone Visible/Infrared Imaging Spectrometer (AVIRIS) data, Geology 25, 559–562.

    Article  Google Scholar 

  12. Day, S.J. (1996) Hydrothermal pore fluid pressure and the stability of porous, permeable volcanoes, in W.J. McGuire, A.P. Jones and J. Neuberg (eds.), Volcano Instability on the Earth and Other Planets. Geological Society Special Publication, London, pp. 77–93.

    Google Scholar 

  13. Dzurisin, D. (1998) Geodetic detection of inflating stratovolcanoes: A potential breakthrough for mitigating volcanic hazards in the twenty-one century, EOS 79, 973.

    Google Scholar 

  14. Elsworth, D. and Voight, B. (1996) Dike intrusion as a trigger for large earthquakes and the failure of volcano flanks, Journal of Geophysical Research 100, 6005–6024.

    Article  Google Scholar 

  15. Folk, R.L. (1980) Petrology of Sedimentary Rocks. Hemphill, Austin, TX, 182 p.

    Google Scholar 

  16. Francis, P.W. and Wells, G.L. (1988) Landsat thematic mapper observation of debris avalanche deposits in Central Andes, Bulletin of Volcanology 50, 258–278.

    Article  Google Scholar 

  17. Frank, D. (1983) Origin, distribution and rapid removal of hydrothermally formed clay at Mount Baker, Washington, US Geological Survey Professional Paper 1022-E, 31.

    Google Scholar 

  18. Gallino, G.L. and Pierson, T.C. (1985) Polallie creek debris flow and subsequent dam-break flood of 1980, East Fork Hood River Basin, Oregon, US Geological Survey Water Supply Paper 2273, 22.

    Google Scholar 

  19. Glicken, H. (1991) Sedimentary architecture of large volcanic-debris avalanches, in: G.A. Smith and R.V. Fisher (eds.) Sedimentation in Volcanic Settings, SEPM, Tulsa, Special Publication 45, 99–106.

    Google Scholar 

  20. Glicken, H. (1998) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington, Bulletin of the Geological Survey of Japan 49, 55–106.

    Google Scholar 

  21. Gorshkov, G.S. (1962) On the classification and terminology of Pelée and Katmai type eruption, Bulletin of Volcanology 24, 155–165.

    Article  Google Scholar 

  22. Iverson, R.M., Schilling, S.P. and Vallance, J.W. (1998) Objective delineation of lahar-inundation hazard zones, Geological Society of America Bulletin 110, 972–984.

    Article  Google Scholar 

  23. Keefer, D.K. (1984) Landslides caused by earthquakes, Geological Society of America Bulletin 95, 406–421.

    Article  Google Scholar 

  24. Lagmay, A.M.F., Van Wyk Vries, B., Kerle, N. and Pyle, D.M. (2000) Volcano instability induced by strike-slip faulting, Bulletin of Volcanology 62, 331–346.

    Article  Google Scholar 

  25. Macias, J.L., Capra, L., Scott, K.M., Espindola, J.M., Garcia-Palomo, A. and Costa, J.E. (2004) The 26 May 1982 breakout flows derived from failure of a volcanic dam at El Chichón, Chiapas, Mexico, Geological Society of America Bulletin 116, 233–246.

    Article  Google Scholar 

  26. Manville, V., White, J.D.L., Houghton, B.F. and Wilson, C.J.N. (1999) Paleohydrology and sedimentology of a post-1.8 ka breakout flood from intracaldera Lake Taupo, North Island, new Zealand, Geological Society of America Bulletin 111, 1435–1447.

    Article  Google Scholar 

  27. McGuire, W.J. (1996) Volcano instability: A review of contemporary themes, in W.J. McGuire, A.P. Jones and J. Neuberg (eds.), Volcano Instability on the Earth and Other Planets, Geological Society of London Special Publication 110, 1–24.

    Google Scholar 

  28. Moriya, I. (1980) Bandaian Eruption and landforms associated with it. Collection of articles in memory of retirement of Prof K Nishimura, Tohoku University, Tokyo 66, 214–219.

    Google Scholar 

  29. Palmer, B.A. and Neall, V.E. (1989) The Murimotu Formation-9500 year old deposits of a debris avalanche and associated lahars, Mount Ruapehu, North Island, New Zealand, New Zealand Journal of Geology and Geophisics 32, 477–486.

    Google Scholar 

  30. Pierson, T.C. and Costa, J.E. (1987) A rheologic classification of subaerial sediment-water flows, in J.E. Costa and G.F. Wieczorek (eds.), Debris flows/Avalanches: Process, Recognition, and Mitigation. Geological Society of America Reviews in Engineering Geology, Boulder, CO, pp. 1–12.

    Google Scholar 

  31. Pulgarin, B., Capra, L., Macias, J.L. and Cepeda, H. (2001) Depósitos de flujos de escombros gigantes (10 km3) asociados a colapsos de edificios volcánicos: Los casos de los volcanes Nevado del Huila (Colombia) y Nevado de Colima (México), Revista de Geofísica del Instituto Panamericano de Geografía e Historia 55, 51–75.

    Google Scholar 

  32. Schuster, R.L. and Costa, J.E. (1986) A perspective in landslide dams, in R.L. Schuster (ed.), Landslide Dams: Processes, Risk, and Mitigation, Geotechnical Special Publication No. 3. American Society of Civil Engineers, New York, NY, 1–20.

    Google Scholar 

  33. Schuster, R.L. and Crandell, D.R. (1984) Catastrophic debris avalanches from volcanoes, IV International Symposium on landslides proceedings, Vol. 1, Toronto, 567–572.

    Google Scholar 

  34. Scott, K.M. (1985) Lahars and flow transformations at Mount St. Helens, Washington, USA, International Symposium on Erosion, Debris Flow and Disaster Prevision, Tsukuba, Japan, 209–214.

    Google Scholar 

  35. Scott, K.M., Macias, J.L., Vallance, J.W., Naranjo, J.A., Rodriguez-Elizarrarás, S.R. and McGeehin, J.P. (2002) Catastrophic debris flows transformed from landslides in volcanic terrains: Mobility, hazard assessment, and mitigation strategies, US Geological Survey Professional Paper 1630, 61.

    Google Scholar 

  36. Scott, K.M., Vallance, J.V., Kerle, N., Macias, J.L., Strauch, W. and Devoli, G. (2005) Catastrophic precipitation-triggered lahars at Casita Volcano, Nicaragua, flow bulking and transformation, Earth Surf Process Landforms 30, 59–79.

    Article  Google Scholar 

  37. Scott, K.M. and Vallance, J.W. (1995) Debris flow, debris avalanche, and flood hazards at and downstream from Mount Rainier, Washington, US Geological Survey Hydrologic Investigation Atlas, 729.

    Google Scholar 

  38. Sheridan, M.F., Bonnard, C., Carreno, C., Siebe, C., Strauch, W., Navarro, M., Calero, J.C. and Trujilo, N.B. (1999) Report on the 30 October 1998 Rock Fall/Avalanche and breakout flow of Casita Volcano, Nicaragua, Triggered by Hurricane Mitch, Lanslide News 12, 2–4.

    Google Scholar 

  39. Siebert, L. (1984) Large volcanic debris avalanches: Characteristics of source areas, deposits and associated eruptions, Journal of Volcanology and Geothermal Research 22, 163–197.

    Article  Google Scholar 

  40. Siebert, L., Glicken, H. and Ui, T. (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions, Bulletin of Volcanology 49, 435–459.

    Article  Google Scholar 

  41. Smith, G.A. and Fritz, W.J. (1989) Volcanic influences on terrestrial sedimentation, Geology 17, 375–376.

    Article  Google Scholar 

  42. Stoopes, G.R. and Sheridan, M.F. (1992) Giant debris avalanches from the Colima Volcanic complex, Mexico: Implication for long-runout landslides (>100 km), Geology 20, 299–302.

    Article  Google Scholar 

  43. Swanson, F.J., Norio, O. and Masaki, T. (1986) Landslide dams in Japan, in R.L. Schuster (ed.), Landslide Dams – Processes, Risk and Mitigation, Geotechnical Special Publication No. 3. American Society of Civil Engineers, New York, NY, pp. 131–145.

    Google Scholar 

  44. Ui, T. and Glicken, H. (1986) Internal structural variations in a debris-avalanche deposit from ancestral Mount Shasta, California, USA, Bulletin of Volcanology 48, 189–194.

    Article  Google Scholar 

  45. Umbal, J.V. and Rodolfo, K.S. (1996) The 1991 lahars of southwestern Mount Pinatubo and evolution of the lahar-dammed Mapanuepe lake, in C.G. Newhall and R.S. Punongbayan (eds.), Fire and Mud; Eruptions and Lahars of Mount Pinatubo, Philippine Institute of Volcanology and Seismology. University of Washington Press, Seattle, WA, London, 951–970.

    Google Scholar 

  46. Vallance, J.V. and Scott, K.M. (1997) The Osceola Mudflow from Mount Rainier: Sedimentological and hazard implication of a huge clay-rich debris flow, Geological Society of America Bulletin 109, 143–163.

    Article  Google Scholar 

  47. Vallance, J.V., Siebert, L., Rose, W.I., Girón, J.R. and Banks, N.G. (1995) Edifice collapse and related hazard in Guatemala, Journal of Volcanology and Geothermal Research 66, 337–355.

    Article  Google Scholar 

  48. Van Wyk Vries, B. and Borgia, A. (1996) The role of basement in volcano deformation, in M.J. McGuire, A.P. Jones, and J. Neuberg (eds.), Volcano Instability on the Earth and Other Planets, Geological Society of London Special Publication 110, 95–110.

    Google Scholar 

  49. Van Wyk Vries, B., Self, S., Francis, P.W. and Keszthelyi, L. (2001) A gravitational spreading origin for the Socompa debris avalanche, Journal of Volcanology and Geothermal Research 105, 225–247.

    Article  Google Scholar 

  50. Waythomas, C.F. (2001) Formation and failure of volcanic debris dams in the Chakachatna River Valley associated with eruptions of the Spurr volcanic complex, Alaska, Geomorphology 39, 111–129.

    Article  Google Scholar 

  51. Waythomas, C.F., Walder, J.S., McGimsey, R.G. and Neal, C.A. (1996) A catastrophic flood caused by drainage of a caldera lake at Aniakchak Volcano, Alaska, and impplications for volcanic hazards assessment, Geological Society of America Bulletin 108, 861–871.

    Article  Google Scholar 

Download references

Acknowledegments

I would like to acknowledge all the organizing committee of the NATO advanced workshop on “Security Of Natural And Artificial Rockslide Dams” who gave me this great opportunity for an incredible scientific experience. José Luis Macías and Duncan Keppie provided useful suggestions that improved this manuscript. All ASTER images were acquired form glovis.usgs.gov web site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Capra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Capra, L. (2011). Volcanic Natural Dams Associated with Sector Collapses: Textural and Sedimentological Constraints on Their Stability. In: Evans, S., Hermanns, R., Strom, A., Scarascia-Mugnozza, G. (eds) Natural and Artificial Rockslide Dams. Lecture Notes in Earth Sciences, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04764-0_9

Download citation

Publish with us

Policies and ethics