Quantum Modeling of Social Networks

The Q.NET Project
  • Cristian Bisconti
  • Angelo Corallo
  • Marco De Maggio
  • Francesca Grippa
  • Salvatore Totaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5736)


This research aims at the application of the models extracted from the many-body quantum mechanics to describe social dynamics. It is intended to draw macroscopic characteristics of communities starting from the analysis of microscopic interactions with respect to the node model. In the aim to experiment the validity of the proposed mathematical model, the Q.NET project is intended to define an open-source platform able to model nodes and interactions of a network, to simulate its behaviour starting from specific defined models. Q.NET project will allow to visualize the macroscopic results emerging during the analysis and simulation phases through a digital representation of the social network.


Quantum Physics Social computing Social Networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Barabàsi, A.-L.: Statistical Mechanics of Complex Networks. Rev. of Mod. Phys. 74, 47 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Amaral, L.A.N., Ottino, J.M.: Complex networks - Augmenting the framework for the study of complex systems. The European Physical Journal 38, 147–162 (2004)CrossRefGoogle Scholar
  3. 3.
    Clippinger, J.H.: III: The biology of business. In: Decoding the natural laws of enterprise. Jossey-Bass Publishers, San Francisco (1999)Google Scholar
  4. 4.
    Gloor, P., Grippa, F., Kidane, Y.H., Marmier, P., Von Arb, C.: Location matters - measuring the efficiency of business social networking. International Journal of Foresight and Innovation Policy 3/4, 230–245 (2008)CrossRefGoogle Scholar
  5. 5.
    Goodwin, J., Emirbayer, M.: Network Analysis, Culture, and the problem of Agency. American Journal of Sociology (1999)Google Scholar
  6. 6.
    Grippa, F., Di Giovanni, A., Passiante, G.: Open Business Innovation Leadership. In: Romano (ed.) Fostering Innovation through Value-Creating Communities, The Emergence of the Stakeholder University, pp. 109–169. Palgrave Macmillan, UK (2009)Google Scholar
  7. 7.
    Hansen, M.: The search-transfer problem: the role of weak ties in sharing knowledge across organization subunits. Administrative Science Quarterly 44(1), 82–111 (1999)CrossRefGoogle Scholar
  8. 8.
    Carley, K.M.: Smart Agents and Organizations of the Future. In: Lievrouw, L., Livingstone, S. (eds.) The Handbook of New Media, ch. 12, pp. 206–220. Sage, Thousand Oaks (2002)Google Scholar
  9. 9.
    Maes, P.: The agent network architecture (ANA). SIGART Bulletin 2(4), 115–120 (1991)CrossRefGoogle Scholar
  10. 10.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pavard, B., Dugdale, J.: The contribution of complexity theory to the study of sociotechnical cooperative systems. In: Third International Conference on Complex Systems, Nashua, NH, May 21-26 (2000), (Retrieved, October 2005)
  12. 12.
    Chandra, S.: Tests of Evolution in Social Networks mimeo. Graduate School of Public and International Affairs, University of Pittsburgh (2008)Google Scholar
  13. 13.
    Steels, L.: When are robots intelligent autonomous agents. Robotics and Autonomous Systems (1995)Google Scholar
  14. 14.
    Varela, F.J., Bourgine, P.: Toward a Practice of Autonomous Systems (1992)Google Scholar
  15. 15.
    Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Cristian Bisconti
    • 1
  • Angelo Corallo
    • 1
  • Marco De Maggio
    • 1
  • Francesca Grippa
    • 1
  • Salvatore Totaro
    • 1
  1. 1.eBusiness Management Section, Scuola Superiore ISUFIUniversity of SalentoLecceItaly

Personalised recommendations