Advertisement

Electronic Spectral and Electrochemical Behavior of Near Infrared Absorbing Metallophthalocyanines

  • Tebello NyokongEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 135)

Abstract

This chapter discusses the electronic absorption spectra and electrochemistry of phthalocyanine complexes which are redshifted to ∼ 730 nm and beyond. These are mainly manganese phthalocyanine derivatives and phthalocyanines containing sulfur substituents. The chapter concentrates mainly on the work done during the last 10 years. There are 96 references quoted and three detailed tables on the electronic absorption spectra, redox potentials, and analytes that are electrocatalyzed using manganese and titanium phthalocyanine complexes.

Keywords

Electrocatalysis Electrochemistry Electronic absorption spectra Phthalocyanine 

Abbreviations

Ac

Anthtracenocyanine

BHc

Benzohelicenocyanine

t-butyl

tert-butyl

Cat

Catechol

CHM

Cyclohexylmethoxy

DCB

Dichlorobenzene

DCM

Dichloromethane

DMF

Dimethylformamide

DMSO

Dimethylsulfoxide

Hc

Helicenocyanine

Nc

Naphthalocyanine

OmePh

Methoxyphenyl

Pa

Phenanthracyanine

THF

Tetrahydrofuran

TBAP

Tetrabutyl ammonium perchlorate

TBABF4

Tetrabutylammonium tetrafluoroborate

Notes

Acknowledgements

This work was supported by the Department of Science and Technology (DST) and National Research Foundation (NRF), South Africa through DST/NRF South African Research Chairs Initiative for Professor of Medicinal Chemistry and Nanotechnology and Rhodes.

References

  1. 1.
    Gregory P (2000) Industrial applications of phthalocyanines. J Porphyrins Phthalocyanines 4(4):432–437CrossRefGoogle Scholar
  2. 2.
    Snow AW (2003) Phthalocyanine aggregation. In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook, phthalocyanine properties and materials, vol 17, Chap 109. Academic Press, New YorkGoogle Scholar
  3. 3.
    Dini D, Hanack M (2003) Physical properties of phthalocyanine-based materials In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook, phthalocyanine properties and materials, vol 17, Chap. 107. Academic Press, New YorkGoogle Scholar
  4. 4.
    Ben-Hur E, Chan WS (2003) Phthalocyanines in photobiology and their medical applications In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook, phthalocyanine properties and materials, vol 19, Chap. 117. Academic Press, New YorkGoogle Scholar
  5. 5.
    Verdree VT, Su G, Pakhamov S, Nesterova I, Hammer RP, Soper SA (2006) Synthesis and photophysical characterization of near-IR metallo-phthalocyanines and other biopolymer conjugates, Abstract 2nd Southwest Regional Meeting of Am Chem Soc Oct. 19–22Google Scholar
  6. 6.
    Auger, A, Burnham P M, Chambrier I, Cook M J, Hughes D L (2005) X-ray crystallographic studies of three substituted indium(III) phthalocyanines: effect of ring substitution and the axial ligand on molecular geometry and packing. J Mater Chem 15(1):168–176CrossRefGoogle Scholar
  7. 7.
    Nakai K, Ishii K, Kobayashi N, Yonehara H, Pac C (2003) Theoretical calculations of the electronic absorption spectra of oxotitanium(IV) phthalocyanine in the solid State. J Phys Chem B 107(36):9749–9755CrossRefGoogle Scholar
  8. 8.
    Zhu J, Shen Y, Gu F, Tao J, Zhang J (2007) Preparation and photovoltaic properties of near-infrared absorbing manganese(II) phthalocyanine polymer films. Mater Lett 61(6):1296–1298CrossRefGoogle Scholar
  9. 9.
    Endo A, Matsumoto S, Mizuguchi J (1999) Interpretation of the near-infrared absorption of magnesium phthalocyanine complexes in terms of exciton coupling effects. J Phys Chem A 103(41):8193–8199CrossRefGoogle Scholar
  10. 10.
    Bian Y, Li L, Dou J, Cheng DYY, Li R, Ma, Ng DKP, Kobayashi N, Jiang J (2004) Synthesis, structure, spectroscopic properties, and electrochemistry of (1,8,15,22-tetra substituted phthalocyaninato)lead complexes. Inorg Chem 43(23):7539–7544CrossRefGoogle Scholar
  11. 11.
    Chambrier I, Cook M J, Wood P T (2000) Conformationally stressed phthalocyanines: the non-planarity of the 1,4,8,11,15,18,22,25-octaisopentyl derivative. Chem Commun 21:2133–2134CrossRefGoogle Scholar
  12. 12.
    Mbambisa G, Tau P, Antunes E, Nyokong T (2007) Synthesis and electrochemical properties of purple manganese(III) and red titanium(IV) phthalocyanine complexes octa-substituted at non-peripheral positions with pentyl thio groups. Polyhedron 26(18):5355–5364CrossRefGoogle Scholar
  13. 13.
    Agboola B, Ozoemena KI, Westbroek P, Nyokong T (2007) Synthesis and electrochemical properties of benzylmercapto and dodecylmercapto tetra substituted manganese phthalocyanine complexes. Electrochim Acta 52(7):2520–2526CrossRefGoogle Scholar
  14. 14.
    Sehlotho N, Durmus M, Ahsen V, Nyokong T (2008) The synthesis and electrochemical behaviour of water soluble manganese phthalocyanines: Anion radical versus MnI species. Inorg Chem Commun 11(5):479–483CrossRefGoogle Scholar
  15. 15.
    Mark J, Stillman MJ (2003) Optical spectra and electronic structure of metallophthalocyanines and metalloporphyrins. In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook, phthalocyanine properties and materials, vol 16, Chap 103. Academic Press, New YorkGoogle Scholar
  16. 16.
    Mack J, Stillman MJ (2001) Assignment of the optical spectra of metal phthalocyanines through spectral band deconvolution analysis and ZINDO calculations. Coord Chem Rev 219–221:993–1032CrossRefGoogle Scholar
  17. 17.
    Muranaka A, Okuda M, Kobayashi N, Somers K, Ceulemans A (2004) Recognition of chiral catechols using oxo-titanium phthalocyanine. J Am Chem Soc 126(14):4596–4604CrossRefGoogle Scholar
  18. 18.
    Makarov SG, Suvorova ON, Litwinski C, Ermilov EA, Roeder B, Tsaryova O, Duelcks T, Woehrle D (2007) Linear and rectangular trinuclear phthalocyanines. Eur J Inorg Chem (4):546–552CrossRefGoogle Scholar
  19. 19.
    Kobayashi N, Muranaka A, Ishii K (2000) Symmetry-lowering of the phthalocyanine chromophore by a C2 type axial ligand. Inorg Chem 39(11):2256–2257CrossRefGoogle Scholar
  20. 20.
    Makarov SG, Piskunov AV, Suvorova ON, Schnurpfeil G, Domrachev GA, Woehrle D (2007) Near-infrared absorbing ligand-oxidized dinuclear phthalocyanines. Chem Eur J 13(11):3227–3233CrossRefGoogle Scholar
  21. 21.
    Makarov SG, Litwinski C, Ermilov EA, Suvorova O, Roeder B, Woehrle D (2006) Synthesis and photophysical properties of annulated dinuclear and trinuclear phthalocyanines. Chem Eur J 12(5):1468–1474CrossRefGoogle Scholar
  22. 22.
    Makarov SG, Maksimova KN, Baranov EV, Fukin GK, Suvorova ON, Woehrle D, Domrachev GA (2006) Synthesis and electronic spectra of dimeric phthalocyanines. Russ Chem Bull 55(10):1748–1754CrossRefGoogle Scholar
  23. 23.
    Tau P, Nyokong T (2006) Synthesis, electrochemical and photophysical properties of phthalocyaninato oxotitanium(IV) complexes tetra substituted at the α and β positions with aryl thio groups. Dalton Trans (37):4482–4490CrossRefGoogle Scholar
  24. 24.
    Sooksimuang T, Mandal BK (2003) [5]Helicene-fused phthalocyanine derivatives. New members of the phthalocyanine family. J Org Chem 68(2):652–655Google Scholar
  25. 25.
    Jin S, Cheng G, Chen GZ, Ji Z (2005) Tuning the maximum absorption wavelengths of phthalocyanine derivatives. J Porphyrins Phthalocyanines 9(1):32–39CrossRefGoogle Scholar
  26. 26.
    Chen Y, Hanack M, Blau WJ, Dini D, Liu Y, Lin Y, Bai J (2006) Soluble axially substituted phthalocyanines: synthesis and nonlinear optical response. J Mater Sci 41(8):2169–2185CrossRefGoogle Scholar
  27. 27.
    Kobayashi N, Konami H (1999) Molecular orbitals and electronic spectra of phthalocyanine analoques. In: Leznoff CC, Lever ABP (eds) Phthalocyanines: properties and applications, vol 4, Chap 9. VCH, New YorkGoogle Scholar
  28. 28.
    Nyokong T, Isago H (2004) The renaissance in optical spectroscopy of phthalocyanines and other tetraazaporphyrins. J Porphyrins Phthalocyanines 8(9):1083–1090CrossRefGoogle Scholar
  29. 29.
    Kobayashi N, Ogata H, Nonaka N, Luk’yanets EA (2003) Effect of peripheral substitution on the electronic absorption and fluorescence spectra of metal-free and zinc phthalocyanines. Chem Eur J 9(20):5123–5134CrossRefGoogle Scholar
  30. 30.
    Mbambisa G, Nyokong T (2008) Synthesis and electrochemical characterization of a near infrared absorbing oxo vanadium(IV) octa pentyl thio-phthalocyanine. Polyhedron 27(13):2799–2804CrossRefGoogle Scholar
  31. 31.
    Tau P, Nyokong T (2006) Synthesis and electrochemical characterization of α- and β-tetra-substituted oxo(phthalocyaninato) titanium(IV) complexes. Polyhedron 25(8):1802–1810CrossRefGoogle Scholar
  32. 32.
    Tau P, Nyokong T (2007) Electrochemical characterisation of tetra- and octa-substituted oxo(phthalocyaninato)titanium(IV) complexes. Electrochim Acta 52(11):3641–3650CrossRefGoogle Scholar
  33. 33.
    Arslanoglu Y, Mert-Sevim A, Hamuryudan E, Guel A (2005) Near-IR absorbing phthalocyanines. Dyes Pigm 68(2–3):129–132Google Scholar
  34. 34.
    Agboola B, Nyokong T (2007) Comparative electrooxidation of nitrite by electrodeposited CoII, FeII and MnIII tetrakis(benzylmercapto) and tetrakis(dodecylmercapto) phthalocyanines on gold electrodes. Anal Chim Acta 587(1):116–123CrossRefGoogle Scholar
  35. 35.
    Obirai J, Nyokong T (2005) Synthesis, electrochemical and electrocatalytic behaviour of thiophene-appended cobalt, manganese and zinc phthalocyanine complexes. Electrochim Acta 50(27):5427–5434CrossRefGoogle Scholar
  36. 36.
    Obirai J, Nyokong T (2005) Synthesis, spectral and electrochemical characterization of mercaptopyrimidine-substituted cobalt, manganese and ZnII phthalocyanine complexes. Electrochim Acta 50(16–17):3296–3304CrossRefGoogle Scholar
  37. 37.
    Fox J P, Goldberg DP (2003) Octa alkoxy-substituted phosphorus(V) triazatetrabenzcorroles via ring contraction of phthalocyanine precursors. Inorg Chem 42(25):8181–8191CrossRefGoogle Scholar
  38. 38.
    Fukuda T, Ishiguro T, Kobayashi N (2005) Non-planar phthalocyanines with Q-bands beyond 800 nm. Tetrahedron Lett 46(16):2907–2909CrossRefGoogle Scholar
  39. 39.
    Isago H (2003) Spectral properties of a novel antimony(III)-phthalocyanine complex that behaves like J-aggregates in non-aqueous media. Chem Commun 15:1864–1865CrossRefGoogle Scholar
  40. 40.
    Leznoff CC, Black LS, Hiebert A, Causey PW, Christendat D, Lever ABP (2006) Red manganese phthalocyanines from highly hindered hexadecaalkoxyphthalocyanines Inorg Chim Acta 359(9):2690–2699Google Scholar
  41. 41.
    Bhardwaj N, Andraos J, Leznoff CC (2002) The syntheses and NMR studies of hexadeca- and octaneopentoxyphthalocyanines. Can J Chem 80(2):141–147CrossRefGoogle Scholar
  42. 42.
    Eberhardt W, Hanack M (1997) Synthesis of hexadecaalkoxy-substituted nickel and iron phthalocyanines. Synthesis 1:95–100CrossRefGoogle Scholar
  43. 43.
    Khene S, Cammidge AN, Cook MJ, Nyokong T (2007) Electrochemical and photophysical characterization of non-peripherally-octa alkyl substituted dichlorotin(IV) phthalocyanine and tetrabenzotriazaporphyrin compounds. J Porphyrins Phthalocyanines 11(10):761–770CrossRefGoogle Scholar
  44. 44.
    Obirai J, Nyokong T (2004) Electrochemical studies of manganese tetraamminophthalocyanine monomer and polymer. Electrochim Acta 49(9–10):1417–1428Google Scholar
  45. 45.
    Nombona N, Tau P, Sehlotho N, Nyokong T (2008) Electrochemical and electrocatalytic properties of α-substituted manganese and titanium phthalocyanines. Electrochim Acta 53(7):3139–3148CrossRefGoogle Scholar
  46. 46.
    Tau P, Nyokong T (2007) Electrocatalytic oxidation of nitrite by tetra substituted oxotitanium(IV) phthalocyanines adsorbed or polymerized on glassy carbon electrode. J Electroanal Chem 611(1–2):10–18CrossRefGoogle Scholar
  47. 47.
    Khene S, Geraldo DA, Togo CA, Limson J, Nyokong T (2008) Synthesis, electrochemical characterization of tetra- and octa-substituted dodecyl-mercapto tin phthalocyanines in solution and as self-assembled monolayers. Electrochim Acta 54:183–191CrossRefGoogle Scholar
  48. 48.
    Knecht S, Durr K, Schmid G, Subramanian LR, Hanack M (1999) Synthesis and properties of soluble phthalocyaninatomanganese(III) complexes. J Porphyrins Phthalocyanines 3(4):292–298CrossRefGoogle Scholar
  49. 49.
    Kasha M, Rawls HR, El-Bayoumi MA (1965) Exciton model in molecular spectroscopy. Pure Appl Chem 11(3–4):371–392CrossRefGoogle Scholar
  50. 50.
    Yarasir MN, Kandaz M, Koca A, Salih B (2006) Functional alcohol-soluble double-decker phthalocyanines: synthesis, characterization, electrochemistry and peripheral metal ion binding. J Porphyrins Phthalocyanines 10(8):1022–1033CrossRefGoogle Scholar
  51. 51.
    Adachi K, Watarai H (2005) Interfacial aggregation of thioether-substituted phthalocyaninatomagnesium(II)-palladium(II) complexes in the toluene/water system. J Mater Chem 15(44):4701–4710CrossRefGoogle Scholar
  52. 52.
    Engelkamp H, Nolte RJM (2000) Molecular materials based on crown ether functionalized phthalocyanines. J Porphyrins Phthalocyanines 4(5):454–459CrossRefGoogle Scholar
  53. 53.
    Matemadombo F, Maree MD, Ozoemena K I, Westbroek P, Nyokong T (2005) Synthesis, electrochemical and spectroelectrochemical studies of octa phenyl thio-substituted phthalocyanines. J Porphyrins Phthalocyanines 9(7):484–490CrossRefGoogle Scholar
  54. 54.
    Agboola BO, Ozoemena KI, Nyokong T (2006) Electrochemical properties of benzylmercapto and dodecylmercapto tetra substituted nickel phthalocyanine complexes: electrocatalytic oxidation of nitrite. Electrochim Acta 51(28):6470–6478CrossRefGoogle Scholar
  55. 55.
    Agboola B, Ozoemena KI, Nyokong T (2006) Synthesis and electrochemical characterisation of benzylmercapto and dodecylmercapto tetra substituted cobalt, iron, and zinc phthalocyanines complexes. Electrochim Acta 51(21):4379–4387CrossRefGoogle Scholar
  56. 56.
    Obirai J, Rodrigues Pereira N, Bedioui F, Nyokong T (2003) Synthesis, spectral and electrochemical properties of a new family of pyrrole substituted cobalt, iron, manganese, nickel and zinc phthalocyanine complexes. J Porphyrins Phthalocyanines 7(7):508–520CrossRefGoogle Scholar
  57. 57.
    Rodrigues Pereira N, Obirai J, Nyokong T, Bedioui F (2005) Electropolymerized pyrrole-substituted manganese phthalocyanine films for the electroassisted biomimetic catalytic reduction of molecular oxygen. Electroanalysis 17(2):186–190CrossRefGoogle Scholar
  58. 58.
    Obirai J, Nyokong T (2004) Electrochemical and catalytic properties of chromium tetra aminophthalocyanine. J Electroanal Chem 573:77–85CrossRefGoogle Scholar
  59. 59.
    A Fukuda T, Ono K, Homma S, Kobayashi N (2003) Phthalocyanine producing green, ocher, and red colors depending on the central metals. Chem Lett 32(8):736–737CrossRefGoogle Scholar
  60. 60.
    Ozkaya AR, Gurek AG, Gul A, Bekaroglu O (1997) Electrochemical and spectral properties of octakis(hexyl thio)-substituted phthalocyanines. Polyhedron 16(11):1877–1883CrossRefGoogle Scholar
  61. 61.
    Takahashi K, Kawashima M, Tomita Y, Itoh M (1995) Synthesis and spectral and electrochemical properties of 2,3,9,10,16,17,23,24-octa butyl thiophthalocyaninatozinc(II). Inorg Chim Acta 232(1–2):69–73CrossRefGoogle Scholar
  62. 62.
    Janczak J, Kubiak R, Śledź M, Borrmann H, Grin Y (2003) Synthesis, structural investigations and magnetic properties of dipyridinated manganese phthalocyanine, MnPc(py)2. Polyhedron 22:2689–2697CrossRefGoogle Scholar
  63. 63.
    Bard AJ, Faulkner, LR (2000) Electrochemical methods, fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  64. 64.
    Jiang Z, Ou Z, Chen N, Wang J, Huang J, Shao J, Kadish KM (2005) Synthesis, spectral and electrochemical characterization of non-aggregating α-substituted vanadium(IV)-oxo phthalocyanines J Porphyrins Phthalocyanines 9(5):352–360Google Scholar
  65. 65.
    L’Her, M, Pondaven A (2003) Redox properties and electrochemistry of phthalocyanines In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook, phthalocyanine properties and materials, vol 16, Chap 104. Academic Press, New YorkGoogle Scholar
  66. 66.
    Fukuda F, Homma S, Kobayashi N (2005) Deformed phthalocyanines: synthesis and characterization of zinc phthalocyanines bearing phenyl substituents at the 1,4,8,11,15,18,22, and/or 25-positions. Chem Euro J 11(18):5205–5216CrossRefGoogle Scholar
  67. 67.
    Lackinger M, Mueller T, Gopakumar TG, Mueller F, Hietschold M, Flynn G W (2004) Tunneling voltage polarity-dependent submolecular contrast of naphthalocyanine on graphite. An STM study of close-packed monolayers under ultrahigh-vacuum conditions. J Phys Chem B 108(7):2279–2284Google Scholar
  68. 68.
    Yonehara H, Ogawa K, Etori H, Pac C (2002) Vapor deposition of oxotitanium(IV) phthalocyanine on surface-modified substrates: Effects of organic surfaces on molecular alignment. Langmuir 18(20):7557–7563CrossRefGoogle Scholar
  69. 69.
    Finklea HO (2000) Self-assembled monolayers on electrodes. In: Meyers RA (ed) Encyclopedia of analytical chemistry, Chap 11. Wiley, New YorkGoogle Scholar
  70. 70.
    Salomon E, Angot T, Papageorgiou N, Layet J-M (2005) Self-assembled monolayer of tin-phthalocyanine on InSb(001)-(4 ×2) ∕ c(8 ×2). Surf Sci 596(1–3):74–81Google Scholar
  71. 71.
    Somashekarappa MP, Keshavayya J, Sampath S (2002) Self-assembled molecular films of tetra amino metal (Co, Cu, Fe) phthalocyanines on gold and silver. Electrochemical and spectroscopic characterization. Pure Appl Chem 74(9):1609–1620Google Scholar
  72. 72.
    Somashekarappa MP, Sampath S (2002) Orientation dependent electrocatalysis using self-assembled molecular films. Chem Commun 12:1262–1263CrossRefGoogle Scholar
  73. 73.
    Li, Z, Lieberman M, Hill W (2001) XPS and SERS study of silicon phthalocyanine monolayers: Umbrella vs octopus design strategies for formation of oriented SAMs. Langmuir 17(16):4887–4894CrossRefGoogle Scholar
  74. 74.
    Revell DJ, Chambrier I, Cook MJ, Russell D A (2000) Formation and spectroscopic characterization of self-assembled phthalocyanine monolayers. J Mater Chem 10(1):31–37CrossRefGoogle Scholar
  75. 75.
    Cook MJ, Chambrier I (2003) Phthalocyanine thin films and structural studies In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin handbook, phthalocyanine properties and materials, vol 17, Chap 108. Academic Press, New YorkGoogle Scholar
  76. 76.
    Matemadombo F, Griveau S, Bedioui F, Nyokong T (2008) Electrochemical characterization of self-assembled monolayer of a novel manganese tetra benzyl thio-substituted phthalocyanine and its use in nitrite oxidation. Electroanalysis 20(17):1863–1872CrossRefGoogle Scholar
  77. 77.
    Hone DC, Walker PI, Evans-Gowing R, FitzGerald S, Beeby A, Chambrier I, Cook MJ, Russell DA (2002) Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy. Langmuir 18(8):2985–2987CrossRefGoogle Scholar
  78. 78.
    Cook MJ (1999) Phthalocyanine thin films. Pure Appl Chem 71(11):2145–2151CrossRefGoogle Scholar
  79. 79.
    Huang X, Liu Y, Wang S, Zhou S, Zhu D (2002) Synthesis and self-assembly of 2,9,16-Tri(tert-butyl)-23-(10-mercaptodecyloxy)phthalocyanine and the application of its self-assembled monolayers in organic light-emitting diodes. Chem Eur J 8(18):4179–4184CrossRefGoogle Scholar
  80. 80.
    Schweikart K, Malinovskii VL, Yasseri AA, Li J, Lysenko AB, Bocian DF, Lindsey JS (2003) Synthesis and characterization of bis(S-acetyl thio)-derivatized europium triple-decker monomers and oligomers. Inorg Chem 42(23):7431–7446CrossRefGoogle Scholar
  81. 81.
    Ozoemena K I, Nyokong T; Westbroek P (2003) Self-assembled monolayers of cobalt and iron phthalocyanine complexes on gold electrodes: Comparative surface electrochemistry and electrocatalytic interaction with thiols and thiocyanate. Electroanalysis 15(22):1762–1770CrossRefGoogle Scholar
  82. 82.
    Ozoemena K, Nyokong T (2002) Voltammetric characterization of the self-assembled monolayer (SAM) of octa butyl thiophthalocyaninatoiron(II): a potential electrochemical sensor. Electrochim Acta 47(25):4035–4043CrossRefGoogle Scholar
  83. 83.
    Li Z, Lieberman M (2001) Axial reactivity of soluble silicon(IV) phthalocyanines. Inorg Chem 40(5):932–939CrossRefGoogle Scholar
  84. 84.
    Ozoemena KI, Nyokong T (2005) Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta 67(1):162–168CrossRefGoogle Scholar
  85. 85.
    Ozoemena KI, Nyokong T (2005) Surface electrochemistry of iron phthalocyanine axially ligated to 4-mercaptopyridine self-assembled monolayers at gold electrode: Applications to electrocatalytic oxidation and detection of thiocyanate. J Electroanal Chem 579(2):283–289CrossRefGoogle Scholar
  86. 86.
    Ozoemena KI, Nyokong T (2006) Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes. Electrochim Acta 51(13):2669–2677CrossRefGoogle Scholar
  87. 87.
    Mashazi PN, Ozoemena K I, Maree DM, Nyokong T (2006) Self-assembled monolayers (SAMs) of cobalt tetra carboxylic acid chloride phthalocyanine covalently attached onto a preformed mercaptoethanol SAM: A novel method. Electrochim Acta 51(17):3489–3494CrossRefGoogle Scholar
  88. 88.
    Huc V, Saveyroux M, Bourgoin JP, Valin F, Zalczer G, Albouy PA, Palacin S (2000) Grafting ruthenium phthalocyanine on gold and silica: Using apical ligands as linkers. Langmuir 16(4):1770–1776CrossRefGoogle Scholar
  89. 89.
    Brown KL, Shaw J, Ambrose M, Mottola HA (2002) Voltammetric, chronocoulometric and spectroelectrochemical studies of electropolymerized films based on CoII ∕ II- and ZnII-4,9,16,23-tetra aminophthalocyanine: effect of high pH. Microchem J 72(3):285–298CrossRefGoogle Scholar
  90. 90.
    Trollund E, Ardiles P, Aguirre M J, Biaggio SR, Rocha-Filho RC (2000) Spectroelectrochemical and electrical characterization of poly(cobalt-tetra aminophthalocyanine)-modified electrodes: electrocatalytic oxidation of hydrazine. Polyhedron 19(22–23):2303–2312CrossRefGoogle Scholar
  91. 91.
    Zhang S, Sun W-l, Xian Y-z, Zhang W, Jin L, Yamamoto K, Tao S, Jin, J (1999) Multichannel amperometric detection system for liquid chromatography to assay the thiols in human whole blood using the platinum microelectrodes chemically modified by copper tetra aminophthalocyanine. Anal Chim Acta 399(3):213–221CrossRefGoogle Scholar
  92. 92.
    Alpatova NM, Ovsyannikova EV, Tomilova LG, Korenchenko OV, Kondrashov YV (2001) Anodic doping of electropolymerized copper 2,9,16,23-tetra aminophthalocyanine. Russ J Electrochem 37(10):1012–1016CrossRefGoogle Scholar
  93. 93.
    Goux A, Bedioui F, Robbiola L, Pontie M (2003) Nickel tetra aminophthalocyanine based films for the electrocatalytic activation of dopamine. Electroanalysis 15(11):969–974CrossRefGoogle Scholar
  94. 94.
    Sehlotho N, Nyokong T (2006) Effects of ring substituents on electrocatalytic activity of manganese phthalocyanines towards the reduction of molecular oxygen. J Electroanal Chem 595(2):161–167CrossRefGoogle Scholar
  95. 95.
    Tau P, Nyokong T (2007) Electrocatalytic activity of aryl thio tetra substituted oxotitanium(IV) phthalocyanines towards the oxidation of nitrite. Electrochim Acta 52(13):4547–4553CrossRefGoogle Scholar
  96. 96.
    Lever ABP, Milaeva, ER, Speier, G (1993) The redox chemistry of metallophthalocyanines in solution In: Leznoff CC, Lever ABP (eds) Phthalocyanines: properties and a H 2 Pc vol 3, Chap 1. VCH, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of ChemistryRhodes UniversityGrahamstownSouth Africa

Personalised recommendations