Skip to main content

Computing a Comprehensible Model for Spam Filtering

  • Conference paper
Discovery Science (DS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5808))

Included in the following conference series:

  • 1911 Accesses

Abstract

In this paper, we describe the application of the Desicion Tree Boosting (DTB) learning model to spam email filtering.This classification task implies the learning in a high dimensional feature space. So, it is an example of how the DTB algorithm performs in such feature space problems. In [1], it has been shown that hypotheses computed by the DTB model are more comprehensible that the ones computed by another ensemble methods. Hence, this paper tries to show that the DTB algorithm maintains the same comprehensibility of hypothesis in high dimensional feature space problems while achieving the performance of other ensemble methods. Four traditional evaluation measures (precision, recall, F1 and accuracy) have been considered for performance comparison between DTB and others models usually applied to spam email filtering. The size of the hypothesis computed by a DTB is smaller and more comprehensible than the hypothesis computed by Adaboost and Naïve Bayes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Triviño-Rodriguez, J.L., Ruiz-Sepúlveda, A., Morales-Bueno, R.: How an ensemble method can compute a comprehensible model. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) 10th International Conference on Data Warehousing and Knowledge Discovery. LNCS, vol. 5182, pp. 268–378. Springer, Heidelberg (2008)

    Google Scholar 

  2. Cohen, W.W., Singer, Y.: Context-sensitive learning methods for text categorization. In: ACM Transactions on Information Systems, pp. 307–315. ACM Press, New York (1996)

    Google Scholar 

  3. Ruiz, M.E., Srinivasan, P.: Hierarchical neural networks for text categorization. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 281–282 (1999)

    Google Scholar 

  4. Larkey, L.S., Croft, W.B.: Combining classifiers in text categorization. In: SIGIR 1996: Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 289–297. ACM, New York (1996)

    Chapter  Google Scholar 

  5. Schapire, R.E., Singer, Y., Singhal, A.: Boosting and rocchio applied to text filtering. In: Proceedings of ACM SIGIR, pp. 215–223. ACM Press, New York (1998)

    Google Scholar 

  6. Drucker, H., Member, S., Wu, D., Member, S., Vapnik, V.N.: Support vector machines for spam categorization. IEEE Transactions on Neural Networks 10, 1048–1054 (1999)

    Article  Google Scholar 

  7. Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Sakkis, G., Spyropoulos, C.D., Stamatopoulos, P.: Learning to filter spam e-mail: A comparison of a naive bayesian and a memory-based approach. CoRR cs.CL/0009009 (2000)

    Google Scholar 

  8. Apte, C., Damerau, F., Weiss, S.M., Apte, C., Damerau, F., Weiss, S.M.: Automated learning of decision rules for text categorization. ACM Transactions on Information Systems 12, 233–251 (1994)

    Article  Google Scholar 

  9. Spamassasin

    Google Scholar 

  10. Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spyropoulos, C.D., Stamatopoulos, P.: A memory-based approach to anti-spam filtering (2001)

    Google Scholar 

  11. Carreras, X., Marquez, L.S., Salgado, J.G.: Boosting trees for anti-spam email filtering. In: Proceedings of RANLP 2001, 4th International Conference on Recent Advances in Natural Language Processing, Tzigov Chark, BG, 58–64 (2001)

    Google Scholar 

  12. Guzella, T.S., Caminhas, W.M.: A review of machine learning approaches to spam filtering. Expert Systems with Application. Corrected Proof (in press, 2009)

    Google Scholar 

  13. Quinlan, J.: Bagging, boosting, and c4.5. In: Proc. of the 13th Nat. Conf. on A.I. and the 8th Innovate Applications of A.I. Conf., pp. 725–730. AAAI/MIT Press (1996)

    Google Scholar 

  14. Tretyakov, K.: Machine learning techniques in spam filtering. Technical report, Institute of Computer Science, University of Tartu (2004)

    Google Scholar 

  15. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proc. 16th International Conf. on Machine Learning, pp. 124–133. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  16. Méndez, J.R., Fdez-Riverola, F., Díaz, F., Iglesias, E.L., Corchado, J.M.: A comparative performance study of feature selection methods for the anti-spam filtering domain. In: Perner, P., Heidelberg, S.B. (eds.) ICDM 2006. LNCS (LNAI), vol. 4065, pp. 106–120. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Chen, C., Gong, Y., Bie, R., Gao, X.: Searching for interacting features for spam filtering. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds.) ISNN 2008, Part I. LNCS, vol. 5263, pp. 491–500. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Kearns, M., Mansour, Y.: On the boosting ability of top-down decision tree learning algorithms. In: Twenty-eighth annual ACM symposium on Theory of computing, Philadelphia, Pennsylvania, United States, pp. 459–468 (1996)

    Google Scholar 

  19. Schapire, R., Freund, Y.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Second European Conference on Computational Learning Theory, pp. 23–37. Springer, Heidelberg (1995)

    Google Scholar 

  20. Dietterich, T., Kearns, M., Mansour, Y.: Applying the weak learning framework to understand and improve C4.5. In: Proc. 13th International Conference on Machine Learning, pp. 96–104. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  21. Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241–259 (1992)

    Article  Google Scholar 

  22. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  23. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruiz-Sepúlveda, A., Triviño-Rodriguez, J.L., Morales-Bueno, R. (2009). Computing a Comprehensible Model for Spam Filtering. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds) Discovery Science. DS 2009. Lecture Notes in Computer Science(), vol 5808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04747-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04747-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04746-6

  • Online ISBN: 978-3-642-04747-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics