Bernstein, A., Provost, F., Hill, S.: Toward intelligent assistance for a data mining process: An ontology-based approach for cost-sensitive classification. IEEE Trans. on Knowl. and Data Eng. 17(4), 503–518 (2005)
CrossRef
Google Scholar
Blockeel, H.: Experiment databases: A novel methodology for experimental research. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 72–85. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Blockeel, H., Vanschoren, J.: Experiment databases: Towards an improved experimental methodology in machine learning. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 6–17. Springer, Heidelberg (2007)
CrossRef
Google Scholar
Boulicaut, J.-F., Klemettinen, M., Mannila, H.: Modeling KDD processes within the inductive database framework. In: Data Warehousing and Knowledge Discovery, pp. 293–302 (1999)
Google Scholar
Brezany, P., Janciak, I., Tjoa, A.: Ontology-Based Construction of Grid Data Mining Workflows. In: Data Mining with Ontologies: Implementations, Findings and Frameworks. IGI Global (2007)
Google Scholar
Cannataro, M., Comito, C.: A data mining ontology for grid programming. In: Proceedings of (SemPGrid2003), pp. 113–134 (2003)
Google Scholar
Cannataro, M., Talia, D.: The knowledge GRID. Commun. ACM 46(1), 89–93 (2003)
CrossRef
MATH
Google Scholar
Diamantini, C., Potena, D.: Semantic annotation and services for KDD tools sharing and reuse. In: ICDMW 2008, Washington, DC, USA, 2008, pp. 761–770. IEEE Computer Society Press, Los Alamitos (2008)
Google Scholar
Džeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Comm. Of The ACM 39, 58–64 (1996)
CrossRef
Google Scholar
Kalousis, A., Bernstein, A., Hilario, M.: Meta-learning with kernels and similarity functions for planning of data mining workflows. In: Proceedings of the Second PlanLearn Workshop 2008, pp. 23–28 (2008)
Google Scholar
King, R.D., et al.: The Automation of Science. Science 324(5923), 85–89 (2009)
CrossRef
Google Scholar
Lister, A., Lord, Ph., Pocock, M., Wipat, A.: Annotation of SMBL models through rule-based semantic integration. In: Proc. of Bio-ontologies SIG/ ISMB 2009 (2009)
Google Scholar
Malaia, E.: Engineering ontology: domain acquisition methodology and practice. VDM Saarbrucken (2009)
Google Scholar
Mizoguchi, R.: Tutorial on ontological engineering - part 3: Advanced course of ontological engineering. New Generation Comput 22(2) (2004)
Google Scholar
Panov, P., Džeroski, S., Soldatova, L.: OntoDM: An ontology of data mining. In: ICDMW 2008, pp. 752–760 (2008)
Google Scholar
Cimiano, P., Buitelaar, P. (eds.): Ontology learning and population: bridging the gap between text and knowledge. IOS Press, Netherlands (2008)
MATH
Google Scholar
Peng, Y., Kou, G., Shi, Y., Chen, Z.: A descriptive framework for the field of data mining and knowledge discovery. International Journal of Information Technology & Decision Making (IJITDM) 7(04), 639–682 (2008)
CrossRef
Google Scholar
Quinlan, R.: C4.5: programs for machine learning. Morgan Kaufmann, San Francisco (1993)
Google Scholar
Schober, D., Kusnierczyk, W., Lewis, S.E., Lomax, J.: Towards naming conventions for use in controlled vocabulary and ontology engineering. In: Proceedings of BioOntologies SIG, ISMB 2007, pp. 29–32 (2007)
Google Scholar
Smith, B.: Ontology. In: Blackwell Guide to the Philosophy of Computing and Information, pp. 155–166. Oxford Blackwell, Malden (2003)
Google Scholar
Smith, B., et al.: The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology 25(11), 1251–1255 (2007)
CrossRef
Google Scholar
Smith, B., et al.: Relations in biomedical ontologies. Genome Biology 6(5) , (2005)
Google Scholar
Soldatova, L., Aubrey, W., King, R.D., Clare, A.: The exact description of biomedical protocols. Bioinformatics, 24(13) (2008)
Google Scholar
Soldatova, L., King, R.D.: Are the current ontologies in biology good ontologies? Nature Biotechnology 23(9), 1095–1098
Google Scholar
Soldatova, L., King, R.D.: An ontology of scientific experiments. Journal of the Royal Society Interface 3(11), 795–803 (2006)
CrossRef
Google Scholar
Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.: Experiment databases: Creating a new platform for meta-learning research. In: Proceedings of the Second PlanLearn Workshop 2008, pp. 10–15 (2008)
Google Scholar
Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. (June 2005)
Google Scholar
Yang, Q., Wu, X.: 10 challenging problems in data mining research. International Journal of Information Technology and Decision Making 5(4), 597–604 (2006)
CrossRef
Google Scholar
Zakova, M., Kremen, P., Zelezny, F., Lavrač, N.: Planning to learn with a knowledge discovery ontology. In: Proceedings of the Second Planning to Learn Workshop, pp. 29–34 (2008)
Google Scholar