Skip to main content

Rearrangement Models and Single-Cut Operations

  • Conference paper
Comparative Genomics (RECOMB-CG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5817))

Included in the following conference series:

Abstract

There have been many widely used genome rearrangement models, such as reversals, Hannenhalli-Pevzner, and double-cut and join. Though each one can be precisely defined, the general notion of a model remains undefined. In this paper, we give a formal set-theoretic definition, which allows us to investigate and prove relationships between distances under various existing and new models. We also initiate the formal study of single-cut operations by giving a linear time algorithm for the distance problem under a new single-cut and join model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, Z., Sankoff, D.: The ABCs of MGR with DCJ. Evol. Bioinform. 4, 69–74 (2008)

    CAS  Google Scholar 

  2. Alekseyev, M.A., Pevzner, P.A.: Are there rearrangement hotspots in the human genome? PLoS Comput. Biol. 3(11), e209 (2007)

    Article  Google Scholar 

  3. Alekseyev, M.A., Pevzner, P.A.: Whole genome duplications, multi-break rearrangements, and genome halving problem. In: SODA, pp. 665–679 (2007)

    Google Scholar 

  4. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. J. Comp. Biol. 8(5), 483–491 (2001)

    Article  CAS  Google Scholar 

  5. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Bergeron, A., Mixtacki, J., Stoye, J.: HP distance via double cut and join distance. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 56–68. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Bergeron, A., Mixtacki, J., Stoye, J.: On computing the breakpoint reuse rate in rearrangement scenarios. In: Nelson, C.E., Vialette, S. (eds.) RECOMB-CG 2008. LNCS (LNBI), vol. 5267, pp. 226–240. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Cohen, D.S., Blum, M.: On the problem of sorting burnt pancakes. Discr. Appl. Math. 61(2), 105–120 (1995)

    Article  Google Scholar 

  9. Dobzhansky, T., Sturtevant, A.H.: Inversions in the chromosomes of Drosophila Pseudoobscura. Genetics 23, 28–64 (1938)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Feijão, P., Meidanis, J.: SCJ: A novel rearrangement operation for which sorting, genome median and genome halving problems are easy. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS (LNBI), vol. 5724, pp. 85–96. Springer, Heidelberg (2009)

    Google Scholar 

  11. Gates, W., Papadimitiou, C.: Bounds for sorting by prefix reversals. Discr. Math. 27, 47–57 (1979)

    Article  Google Scholar 

  12. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of FOCS 1995, pp. 581–592. IEEE Press, Los Alamitos (1995)

    Google Scholar 

  13. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999); First appeared in STOC 1995 Proceedings

    Article  Google Scholar 

  14. Jean, G., Nikolski, M.: Genome rearrangements: a correct algorithm for optimal capping. Inf. Process. Lett. 104, 14–20 (2007)

    Article  Google Scholar 

  15. Lin, Y., Moret, B.M.E.: Estimating true evolutionary distances under the DCJ model. Bioinformatics 24, i114–i122 (2008); Proceedings of ISMB 2008

    Article  Google Scholar 

  16. Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Research 16(12), 1557–1565 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meidanis, J., Walter, M.E.M.T., Dias, Z.: Reversal distance of signed circular chromosomes. In: Technical Report IC–00-23. Institute of Computing, University of Campinas (2000)

    Google Scholar 

  18. Mixtacki, J.: Genome halving under DCJ revisited. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 276–286. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Nadeau, J.H., Taylor, B.A.: Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81, 814–818 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangements. J. Bioinf. Comput. Biol. 1(1), 71–94 (2003)

    Article  CAS  Google Scholar 

  21. Pevzner, P.A., Tesler, G.: Transforming men into mice: the Nadeau-Taylor chromosomal breakage model revisited. In: Proceedings of RECOMB 2003, pp. 247–256 (2003)

    Google Scholar 

  22. Sankoff, D.: Edit distances for genome comparison based on non-local operations. In: Apostolico, A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp. 121–135. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  23. Sankoff, D., Cedergren, R., Abel, Y.: Genomic divergence through gene rearrangement. In: Doolittle, R.F. (ed.) Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, Meth. Enzymol., ch. 26, vol. 183, pp. 428–438. Academic Press, San Diego (1990)

    Google Scholar 

  24. Sankoff, D., Trinh, P.: Chromosomal breakpoint reuse in genome sequence rearrangement. J. of Comput. Biol. 12(6), 812–821 (2005)

    Article  CAS  Google Scholar 

  25. Tannier, E., Bergeron, A., Sagot, M.-F.: Advances on sorting by reversals. Discr. Appl. Math. 155(6-7), 881–888 (2007)

    Article  Google Scholar 

  26. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65(3), 587–609 (2002)

    Article  Google Scholar 

  27. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Medvedev, P., Stoye, J. (2009). Rearrangement Models and Single-Cut Operations. In: Ciccarelli, F.D., Miklós, I. (eds) Comparative Genomics. RECOMB-CG 2009. Lecture Notes in Computer Science(), vol 5817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04744-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04744-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04743-5

  • Online ISBN: 978-3-642-04744-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics