Skip to main content

Analyses/Testing

  • Chapter
  • First Online:
Phenolic Resins: A Century of Progress

Abstract

The characterization of phenolic resins by modern analytical techniques is detailed. Common wet chemical and ISO methods are referenced, yet the chapter’s emphasis resides in the numerous advances in instrumental techniques. For instance, the authors make a special effort to illustrate the use of GC×GC, MALLS detector in GPC, and some LC-MS and TOF-MS applications. Larger sections on NMR and IR indicate the power of these tools for analysis and also contain peak position tables. Thermal analysis techniques, including rheometry, are discussed with experimental procedures and applications. Finally, microscopy, both optical, and SEM/X-ray, with sample preparation insights, are discussed. The chapter cites 115 papers using analytical chemistry techniques in the examination of phenolic polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Atomic absorption

ABES:

Automated bonding evaluation system

AFM:

Atomic force microscopy

APT:

Attached proton test

CI:

Chemical ionization

CP-MAS:

Cross polarization magic angle spinning

CSCM:

Chemical shift correlation maps

DEA:

Dielectric analysis

DEPT:

Distortionless enhancement by polarization transfer

DMA:

Dynamic mechanical analysis

DNPH:

Dinitrophenylhydrazine

DQF COSY:

Double quantum filtered correlated spectroscopy

DSC:

Differential scanning calorimetry

EI:

Electron ionization

FIB:

Focused ion beam

G′:

Storage modulus

G″:

Loss modulus

GC:

Gas chromatograph(y)

GC-MS:

Gas chromatography mass spectrometry

GPC:

Gel permeation chromatography

HILIC:

Hydrophobic interaction liquid chromatography

HPLC:

High pressure liquid chromatograph(y)

HS-GC:

Headspace gas chromatography

HS-GC-MS:

Headspace gas chromatography mass spectrometry

INEPT:

Insensitive nuclei enhancement by polarization transfer

IR:

Infrared

KAS:

Kissinger–Akahira–Sunose

LPF:

Lignin–phenol–formaldehyde

MALDI-TOF-MS:

Matrix assisted laser desorption ionization-time of flight mass spectrometry

MALLS:

Multi-angle laser light scattering

MDF:

Medium density fiberboard

M n :

Number average molecular weight

M w :

Weight average molecular weight

M z :

Z-average molecular weight

NIR:

Near-infrared

NMR:

Nuclear magnetic resonance

NPLC:

Normal phase liquid chromatography

OSB:

Oriented strand board

PES:

Plasma emission spectrometer

PUF:

Phenol–urea–formaldehyde

RI:

Refractive index

SEC:

Size exclusion chromatography

SEM:

Scanning electron microscopy

Tg:

Glass transition temperature

TGA:

Thermogravimetric analysis

TLC:

Thin layer chromatography

TMA:

Thermal mechanical analysis

TOCSY:

Total correlation spectroscopy

TOF-MS:

Time of flight mass spectrometry

UV:

Ultraviolet

VOC:

Volatile organic compound

References

  1. Walker J (1975) Formaldehyde. Krieger Publishing, Huntington NY.486-487 (FOR1)

    Google Scholar 

  2. EPA (1996) Determination of carbonyl compounds by high performance liquid chromatography (HPLC). http://epa.gov/epawaste/hazard/testmethods/sw846/pdfs/8315a.pdf . Accessed 29 January 2009

  3. Valdez D, Mounts J (2000) Formal and hemiformal analysis by 13C-NMR. Wood Adhes 2000 Extended Abstracts110–112

    Google Scholar 

  4. Penrose A (2004) Conventional GPC of phenolic resins on Resipore columns. The Application Notebook, Polymer Labs. 09:62

    Google Scholar 

  5. Mbachu R, Schmidt R, Broline B (2000) The use of triple detector size exclusion chromatographic technique and C-13 NMR in the development of phenolic resins for wood bonding. Proceedings of the 23rd Annual Meeting of the Adhesion Society. 02:150–150C

    Google Scholar 

  6. Dargaville T, Guerzoni F, Looney, M et al (1997) Determination of molecular weight distributions of novolac resins by gel permeation chromatograpy. J Polym Sci A; Polym Chem 35: 1399–1407

    Article  CAS  Google Scholar 

  7. Petrella J (2007) Comparisons between GPC-RI and GPC-MALLS. Unpublished work Georgia-Pacific Chemicals LLC

    Google Scholar 

  8. Reuther F, Krueger R, Schulz G et al (2000) Tailored novolac resins for advanced photoresists – new insight into the molecular structure is achieved by coupling GPC and MALDI-TOF-MS. Advances in Resist Technol and Processing XVII 3999:464-471

    CAS  Google Scholar 

  9. Bir D, Tutin K (2002) Quantitation of trimethyl amine by headspace gas chromatography-mass spectrometry using a base-modified column. J Chrom Sci. 40:337–342

    CAS  Google Scholar 

  10. Biedermann M, Grob K (2006) Phenolic resins for can coatings: I. Phenol-based resole analyzed by GC-MS, GC X GC, NPLC-GC and SEC. Swiss Soc Food Sci Tech LWT 39:633–646

    Article  CAS  Google Scholar 

  11. Biedermann M, Grob K (2006) Phenolic resins for can coatings: II. Resoles based on cresol/phenol mixtures or tert. butyl phenol. Swiss Soc Food Sci Tech LWT 39:647–659

    Article  CAS  Google Scholar 

  12. Dungan R, Reeves J (2004) Pyrolysis of foundry sand resins: a determination of organic products by mass spectrometry. J Env Sci and Health. 40:1557–1567

    Google Scholar 

  13. Wang Y, Cannon F, Salama M et al (2007) Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis. Environ Sci Technol 41:7922–7927

    Article  CAS  Google Scholar 

  14. Astarlo-Aierbe G, Echevaerria J, Egiburu J et al (1998) Kinetics of phenolic resin formation by HPLC. Polym 39:3147–3153

    Article  Google Scholar 

  15. Mechin B, Hanton D, Goff J et al (1985) Identification by HPLC and NMR of the polynuclear constituents of resol type phenol-formaldehyde resins. Eur Polym J 22:114–124

    Google Scholar 

  16. Mechin B, Hanton D, Goff J et al (1983) Characterization of resol type phenol-formaldehyde resins by HPLC and carbon-13 nuclear magnetic resonance. Eur Polym J 20:333–341

    Article  Google Scholar 

  17. Li P, Coleman K, Spaulding W et al (2001) Fractionation and characterization of phenolic resins by high-performance liquid chromatography and gel-permeation chromatography combined with ultraviolet, refractive index, mass spectrometry, and light-scattering detection. J Chrom A 914:147–159

    Article  CAS  Google Scholar 

  18. Lindquist M, Valdez D (2008) LC-MS of phenolic resins. Unpublished work Georgia-Pacific LLC

    Google Scholar 

  19. Bellamy L (1975) The Infra-red spectra of complex molecules. Chapman and Hall, London

    Google Scholar 

  20. Bouajila J, Raffin G, Waton H et al (2003) Phenolic resins (III) – solid state structures and thermal properties of cross-linked phenolic resins. Polym & Polym Compos 11:263–276

    CAS  Google Scholar 

  21. Holopainen T, Alvila L, Rainio J, Pakkanen T (1998) IR spectroscopy as a quantitative and predictive analysis method of phenol-formaldehyde resol resins. J Appl Polym Sci 69:2175–2185

    Article  CAS  Google Scholar 

  22. Huang J, Xu M, Ge Q et al (2005) Controlled synthesis of high-ortho-substitution phenol-formaldehyde resins. J Appl Polym Sci 97:652–658

    Article  CAS  Google Scholar 

  23. Poljansek I, Sebenik U, Krajnc M (2005) Characterization of phenol-urea-formaldehyde resin by inline FTIR spectroscopy. J Appl Polym Sci 99:2016–2028

    Article  Google Scholar 

  24. Maciejewski M, Kedzierski, M, Bednarck E et al (2002) Highly branched melamine-phenolic novolaks. Polymer Bulletin 48:251–259

    Article  CAS  Google Scholar 

  25. Chuayjuljit S, Rattanametangkool P, Potiyaraj P (2007) Preparation of cardanol-formaldehyde resins from cashew nut shell liquid for the reinforcement of natural rubber. J Appl Polym Sci 104:1997–2002

    Article  CAS  Google Scholar 

  26. Li J, Zhang J, Yang H et al (2006) Separation and characterization of alkyl phenol formaldehyde resins demulsifier by adsorption chromatography, gel permeation chromatography, infrared spectrometry and nuclear magnetic resonance spectroscopy. Analytica Chimica Acta 566:224–237

    Article  CAS  Google Scholar 

  27. Chiang C, Ma C, Wu D et al (2003) Preparation, characterization, and properties of novolak-type phenolic/SiO2 hybrid organic-inorganic nanocomposite materials by sol-gel method. J Polym Sci 41:905–913

    CAS  Google Scholar 

  28. Zhang D, Shi J, Guo Q et al (2007) Preparation mechanism and characterization of a novel, regulable hollow phenolic fiber. J Appl Polym Sci 104:2108–2112

    Article  CAS  Google Scholar 

  29. Nagy E, Valdez D, Johnson R et al (2002) In-situ reaction monitoring of wood adhesives by IR spectroscopy with correlation to NMR. Unpublished work presented at Wood Products Meeting

    Google Scholar 

  30. Labbe N, Rials T, Kelley S (2006) FTIR imaging of wood and wood composites In: Stokke et al (ed) Characterization of the cellulosic cell wall. Proceedings of a workshop. Blackwell, Iowa

    Google Scholar 

  31. Ottenbourgs B, Adriaensens P, Carleer R et al (1998) Quantitative carbon-13 solid-state n.m.r. and FT-Raman spectroscopy in novolak resins, Polym 39:5293–5300

    Article  CAS  Google Scholar 

  32. Monni J, Niemela P, Alvila L et al (2008) Online monitoring of synthesis and curing of phenol-formaldehyde resol resins by Raman spectroscopy. Polymer 49: 3865–3874

    Article  CAS  Google Scholar 

  33. Ko T, Kuo W, Chang Y (2001) Microstructural changes of phenolic resin during pyrolysis. J Appl Polym Sci 81:1084–1089

    Article  CAS  Google Scholar 

  34. Ko T, Kuo W, Chang, Y (2000) Raman study of the microstructure changes of phenolic resin during pyrolysis. Polym Compos 21:745–750

    Article  CAS  Google Scholar 

  35. Siesler H, Ozaki Y, Kawata S, Heise H (2002) Near-infrared spectroscopy. Wiley-VCH

    Google Scholar 

  36. Li W, Huang Y, Liu L et al (2006) The application of near infrared spectroscopy in the quality control analysis of glass/phenolic resin prepreg. J Mater Sci 41:7183–7189

    Article  CAS  Google Scholar 

  37. Jiang B, Huang Y (2007) On-line monitoring of alkali-free cloth/phenolic resin prepreg by near-infrared spectroscopy. J Reinf Plastand Compos 26:1625–1636

    Article  CAS  Google Scholar 

  38. Nagy E, Balogh J, Meacham R (2005) Application of near infrared spectroscopy to resin/wax adhesive systems. Wood Adhes 2005:421–424

    Google Scholar 

  39. Mbachu R, Broline B, Congleton T (2005) Visible near infrared monitoring of resin loading prior to the assembly of engineered wood products. Wood Adhesives 2005: 57–63

    Google Scholar 

  40. Mbachu R, Congleton T (2005) NIR spectroscopic monitoring of resin-loading during assembly of engineered wood product. U.S. patent 6,846,446

    Google Scholar 

  41. Mbachu R, Congleton T (2005) Spectroscopic monitoring of resin-application prior to assembly of composite wood veneer product. U.S. patent 6,942,826

    Google Scholar 

  42. Mbachu R, Congleton T (2005) Methods for monitoring resin-loading of wood materials and engineered wood products. U.S. patent 6,846,447

    Google Scholar 

  43. Mbachu R, Congleton T (2006) Methods for monitoring resin-loading of wood materials and engineered wood products. U.S. patent 7,128,867

    Google Scholar 

  44. Mbachu R, Congleton T (2006) Spectroscopic monitoring of resin-application prior to assembly of composite wood veneer product. U.S. patent 7,141,193

    Google Scholar 

  45. Mbachu R (2006) Methods for monitoring binder mix loading of fiber glass mats. U.S. patent application 2006/0138709 A1

    Google Scholar 

  46. Husted S, Khanna V, Chambers K et al (2007) Method and system using NIR spectroscopy for in-line monitoring and controlling content in continuous production of engineered wood products. U.S. patent application 2007/0222100 A1

    Google Scholar 

  47. Datta SD, Higuchi M, Morita M (1999) Analysis of phenol-resorcinol-formaldehyde resins. J Wood Sci 45:411–416

    Article  CAS  Google Scholar 

  48. Despres A, Pizzi A, Pasch H, et al (2007) Comparative 13C-NMR and matrix-assisted laser desorption/ionization time-of-flight analyses of species variation and structure maintenance during melamine-urea-formaldehyde resin preparation. J Appl Polym Sci 106:1106–1128

    Article  CAS  Google Scholar 

  49. Fisher TH, Chao P, Upton CG et al (2002) Spectral assignments and reference data. Magn Reson Chem 40:747–751

    Article  CAS  Google Scholar 

  50. He G, Yan N (2004) 13C-NMR study of structure, composition and curing behavior of phenol-urea-formaldehyde resole resins. Polym 24:68130–6822

    Google Scholar 

  51. Kim M, Amos L, Barnes E (1993) Investigation of a resorcinol-formaldehyde resin by 13C-NMR spectroscopy and intrinsic viscosity measurement. J Polym Sci. 31:1871–1877

    CAS  Google Scholar 

  52. Pethrick R, Thompson B (1986) 13C nuclear magnetic resonance studies of phenol-formaldehyde resins 1-model compounds. British Polym J. 18:171–180 (NMRA2)

    Google Scholar 

  53. Sojka S, Wolfe R, Dietz E, Dannels B (1979) Carbon-13 nuclear magnetic resonance of phenolic resins. Positional isomers of bis(hydroxyl)phenols and bis(hydroxybenzyl)methanes. Macromolecules 12:767–770

    Article  CAS  Google Scholar 

  54. Vazquez G, Lopex-Suevos F, Villar-Garea A, et al (2004) 13C-NMR analysis of phenol-urea-formaldehyde prepolymers and phenol-urea-formaldehyde-tannin adhesives. J Adh Sci Technol 18:1529–1543

    Article  CAS  Google Scholar 

  55. Rego R, Adriaensens PJ, Carleer RA et al (2004) Fully quantitative carbon-13 NMR characterization of resol phenol-formaldehyde prepolymer resins. Polym 45:33–38

    Article  CAS  Google Scholar 

  56. Valdez, D (1995) 13C-NMR spectroscopy – a quantitative tool for wood adhesives. Wood Adhes Sympos Proceedings 193–200

    Google Scholar 

  57. Luukko P, Alvila L, Holpainen T, et al (1998) Optimizing the conditions of quantitative 13C-NMR spectroscopy analysis of phenol-formaldehyde resol resins. J Appl Polym Sci 69:1805–1812

    Article  CAS  Google Scholar 

  58. Popov A, Hallenga K (1990) Modern nmr techniques and their application in chemistry. Marcel Dekker, Inc., New York Basel Hong Kong

    Google Scholar 

  59. Pizzi A, Tekely P (1996) Hardening mechanisms by hexamethylenetetramine of fast-reacting phenolic wood adhesives – A CP-MAS 13C NMR study. Holzforshung 50:277–281

    Article  CAS  Google Scholar 

  60. Zhang X, Looney MG, Soloman DH et al (1997) The chemistry of novolac resins: 3. 13C and 15N n.m.r. studies of curing with hexamethylenetetramine. Polym 38:5835–5848

    Article  CAS  Google Scholar 

  61. Roy D, Ghandi A, Basu PK, Raghunathan P et al (2003) Optimization of monomer content and degree of linearity in lithographically interesting novolac copolymers using NMR spectroscopy. Microelec Eng 70:58–72

    Article  CAS  Google Scholar 

  62. Fisher T, Chao P, Upton C et al (1995) One- and two- dimensional NMR study of resol phenol-formaldehyde prepolymer resins. Magn Reson Chem 33:717–723

    Article  CAS  Google Scholar 

  63. Roy D, Basu P, Raghunathan P et al (2004) Quantitation of microstructure of novolac resins: development of improved one- and two-dimensional NMR methodologies. J Appl Polym Sci 91:2096–2102

    Article  CAS  Google Scholar 

  64. Kim M, Wu Y, Amos L (1997) Polymer structure of cured alkaline phenol-formaldehyde resol resins with respect to resin synthesis mole ratio and oxidative side reactions. J Polym Sci Part A Poly Chem. 35:3275–3285

    Article  CAS  Google Scholar 

  65. Schmidt R, Frazier C (2000) Solid-state NMR analysis of adhesive bondlines in pilot scale flakeboards. Wood Fib Sci 32(4): 419–425

    CAS  Google Scholar 

  66. Schmidt R, Frazier C (1998) 13C CP/MAS NMR as a direct probe of the wood-phenol formaldehyde adhesive bondline. Wood Fib Sci 30(3):250–258

    CAS  Google Scholar 

  67. Laborie M, Frazier C (2006) 13C CP/MAS NMR study of a wood/phenol-fomraldehyde resin bondline. J Mater Sci 41(18):6001–6005

    Article  CAS  Google Scholar 

  68. Andriaensens P, Rego R, Carleer R et al (2003) Solid-state NMR relaxometry study of phenolic resins. Polym Int 52:1647–1652

    Article  Google Scholar 

  69. Pizzi A, Pasch H, Simon C, Rode K (2004) Structure of resorcinol, phenol, and furan resins by MALDI-TOF mass spectrometry and 13C NMR. J Appl Polym Sci 92:2665–2674

    Article  CAS  Google Scholar 

  70. Schrod M, Rode K, Braun D et al (2003) Matrix-assisted laser desorption/ionization spectrometry of synthetic polymers. VI. Analysis of phenol-urea-formaldehyde cocondensates. J Appl Polym Sci 90:2540–2548

    Article  CAS  Google Scholar 

  71. Lei H, Pizzi A, Despres A et al (2006) Ester acceleration mechanisms in phenol-formaldehyde adhesives. J Appl Polym Sci 100:3075–3093

    Article  CAS  Google Scholar 

  72. Bir D, Valdez D (2007) Glycolation of a novolac resin – A TOF-MS study. Unpublished work Georgia-Pacific Chemicals LLC

    Google Scholar 

  73. Ormondroyd G, Grisby W (2002) A simple method for quantifying the PF resin content of composite wood panels. Holz als Roh und Werkstoff 60:313–315 (PES1)

    Google Scholar 

  74. Bouajila J, Raffin G, Alamercery S et al (2003) Phenolic resins (IV). Thermal degradation of crosslinked resins in controlled atmospheres. Polym & Polym Compos 11:345–357

    CAS  Google Scholar 

  75. Kristkova M, Filip P, Weiss Z et al (2004) Influence of metals on the phenol-formaldehyde resin degradation in friction composites. Polym Degrad & Stab 84:49–60

    Article  CAS  Google Scholar 

  76. Holopainen T, Alvila L, Rainio J et al (1997) Phenol-formaldehyde resol resins studied by 13C-NMR spectroscopy, gel permeation chromatography, and differential scanning calorimetry. J Appl Polym Sci 66:1183–1193

    Article  CAS  Google Scholar 

  77. Fowler K (2008) DSC and DMA of phenolic resins. Unpublished work Georgia-Pacific Chemicals LLC

    Google Scholar 

  78. Monni J, Alvila L, Rainio J et al (2006) Novel two-stage phenol-formaldehyde resol resin synthesis. J App Polym Sci 103:371–379

    Article  Google Scholar 

  79. Gabilondo N, Lopez M, Ramos J et al (2007) Curing kinetics of amine and sodium hydroxide catalyzed phenol-formaldehyde resins. J Therm Anal & Calorim 90:229–236

    Article  CAS  Google Scholar 

  80. Lee Y, Kim D, Kim H et al (2003) Activation energy and curing behavior of resol- and novolak- type phenolic resins by differential scanning calorimetry and thermogravimetric analysis. J Appl Polym Sci 89:2389–2596

    Google Scholar 

  81. de Medeiros E, Agnelli J, Joseph K et al (2003) Curing Behavior of a novolak-type phenolic resin analyzed by differential scanning calorimetry. J Appl Polym Sci 90: 1678–1682

    Article  Google Scholar 

  82. Alonso M, Oliet M, Garcia J et al (2006) Transformation of dynamic DSC results into isothermal data for the curing kinetics study of the resol resins. J Therm Anal & Calorim 86:797–802

    Article  CAS  Google Scholar 

  83. Tejado A, Pena C, Labidi J et al (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98:1655–1663

    Article  CAS  Google Scholar 

  84. Khan M, Ashraf S (2007) Studies on thermal characterization of lignin. J Therm Anal & Calorim 89:993–1000

    Article  CAS  Google Scholar 

  85. He G, Yan N (2005) Effect of wood species and molecular weight of phenolic resins in curing behavior and bonding development. Holzforschung 56:635–640

    Article  Google Scholar 

  86. Laborie M, Salmen L, Frazier C (2006) A morphological study of the wood/phenol-formaldehyde adhesive interphase. J Adhes Sci Technol 20:729–741

    Article  CAS  Google Scholar 

  87. Wang M, Wei L, Zhao T (2006) Addition-curable propargyl-containing novolak-type phenolic resins: Its synthesis, characterization, cure, and thermal properties. J Appl Polym Sci 99:1010–1017

    Article  CAS  Google Scholar 

  88. Chiu H, Cheng J (2007) Properties and aggregate structure of unsaturated polyester/phenolic resin blends. Polym-Plast Technol & Eng 46:801–810

    Article  CAS  Google Scholar 

  89. He G, Yan N (2005) Influence of the synthesis conditions on the curing behavior of phenol-urea-formaldehyde resol resins. J Appl Polym Sci 95:1368–1375

    Article  CAS  Google Scholar 

  90. Auad M, Nutt S, Stefani M et al (2006) Rheological study of the curing kinetics of epoxy-phenol novolak resins. J Appl Polym Sci 102:4430–4439

    Article  CAS  Google Scholar 

  91. Halasz L, Vorster O, Pizzi A et al (2001) Rheology study of gelling of phenol-formaldehyde resins. J Appl Polym Sci 80:898–902

    Article  CAS  Google Scholar 

  92. Ibeh C (1998) Differential scanning calorimetry (DSC) and torque rheometry: a viable combination for determining processing parameters of thermosetting plastics. Annu Tech Conf Soc Plast Eng 56:747–752

    Google Scholar 

  93. Laza J, Vilas J, Rodriguez M et al (2002) Analysis of the crosslinking process of a phenolic resin by thermal scanning rheometry. J Appl Polym Sci 83:57–65

    Article  CAS  Google Scholar 

  94. Laza J, Vilas J, Mijangos F et al (2005) Analysis of the crosslinking process of epoxy-phenolic mixtures by thermal scanning rheometry. J Appl Poly Sci 98:818–824

    Article  CAS  Google Scholar 

  95. Malkin A, Gorbunova I, Kerber M (2005) Comparison of four methods for monitoring the kinetics of curing of a phenolic resin. Polym Eng & Sci 2005: 95–102

    Google Scholar 

  96. Morrison T (2000) Kinetics of resin cure by dynamic methanical analysis. RETEC Thermosets 2000 Conf 62–79

    Google Scholar 

  97. Rose J, Shaw M (1999) Cure monitoring of phenolic resins using dynamic rotational rheometry. ANTEC ’99 961–965

    Google Scholar 

  98. Zhao C, Pizzi G (1998) Particleboard dry and wet I.B. – forcasting by gel time and dry TMA bending in pf wood adhesives. Holz Roh Werkstoff 56:402

    Google Scholar 

  99. Taki K, Yoshida H, Yamada M (2000) Thermal analysis and bond quality of phenol-formaldehyde resin adhesives. Wood Adhes 2000 74–75

    Google Scholar 

  100. Sernek M, Kamke F (2007) Application of dielectric analysis for monitoring the cure process of phenol formaldehyde adhesive. Intern J of Adhes & Adhes 27:562–567

    Article  CAS  Google Scholar 

  101. Sernek M, Jost M, Kariz M et al (2005) Evaluation of adhesive cure kinetics by dielectric analysis. Wood Adhes 2005 527–529

    Google Scholar 

  102. Kamke F, Scott B, Sernek M (2005) Dielectric characterization of phenol-formaldehyde adhesive cure. Wood Adhesives 2005: 75–81

    Google Scholar 

  103. Humphrey P (2005) Temperature and reactant injection effects on the bonding dynamics of thermosetting adhesives. Wood Adhesives 2005: 311–316

    Google Scholar 

  104. Lecourt M, Pizzi A, Humphrey P (2003) Comparison of TMA and ABES as forcasting systems of wood bonding effectiveness. Holz Roh Werkstoff 61:75–76

    Article  CAS  Google Scholar 

  105. Jiang Y, Wang D, Zhao T (2007) Preparation, characterization, and prominent thermal stability of phase-change microcapsules with phenolic resin shell and n-hexadecane core. J Appl Polym Sci 104:2799–2806

    Article  CAS  Google Scholar 

  106. Wang S, Adanur S, Jang B (1996) Mechanical and thermo-mechanical failure mechanism analysis of fiber/filler reinforced phenolic matrix composites. Elsevier Science Limited 215–231

    Google Scholar 

  107. Nigam V, Saraf M, Mathur G (1997) Cure characterization of rubber modified epoxy novolaks. J Therm Anal 49:483–490

    Article  CAS  Google Scholar 

  108. Chen X, Zheng, Y, Kang F, Shen W (2006) Preparation and structure analysis of carbon/carbon composite made from phenolic resin impregnation into exfoliated graphite. J Phy & Chem of Solids 67:1141–1144

    Article  CAS  Google Scholar 

  109. Osterle W, Bettge D (2004) A comparison of methods for characterizing brake lining surfaces. Prakt Metallogr 41:494–505

    Google Scholar 

  110. Chandler J, Brandon R, Frihart C (2005) Examination of adhesive penetration in modified wood using fluorescence microscopy. ASC 2005

    Google Scholar 

  111. Frihart C (2005) Adhesive bonding and performance testing of bonded wood products. J ASTM Intern 2:1–11

    Article  Google Scholar 

  112. Konnerth J, Harper D, et al (2007) Adhesive penetration of wood cell walls investigated by scaning thermal microscopy (SThM). Holzforschung 62:91–98

    Article  Google Scholar 

  113. Konnerth J, Valla A, Gindl W (2007) Nanoindentation mapping of a wood-adhesive bond. Appl Phys A 88:371–375

    Article  CAS  Google Scholar 

  114. Johnson A, Yan N (2005) Characterizing local curing of liquid phenol-formaldehyde resin on wood surface using micro-thermal analysis. Wood Adhesives 2005: 171–175

    Article  Google Scholar 

  115. Kim H, Lee Y (2001) Curing behavior of thermosetting adhesive by AFM – phenol formaldehyde; resol and novolak types. 39th KYNTFX 2001 P07A

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank our Director of R&D, Lawrence Gollob, and our co-workers David Bir, Kari Fowler, Matthew Lindquist, and Jesse Petrella for their assistance in preparing this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Valdez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valdez, D., Nagy, E. (2010). Analyses/Testing. In: Pilato, L. (eds) Phenolic Resins: A Century of Progress. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04714-5_5

Download citation

Publish with us

Policies and ethics