Prospects for Organic Dye Nanoparticles

  • Hiroshi Yao
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 9)


A review of organic nanoparticles consisting of small functional dye molecules is presented in this chapter. The study of organic dye nanoparticles does not have a lengthy history, but there is growing scientific and technological interest owing to their special characteristics: physicochemical properties of organic dye nanoparticles considerably differ not only from those of individual molecules due to the presence of van der Waals type intermolecular interactions, but also from those of bulk crystals since the nanoparticles have a large proportion of surface molecules. Simple and versatile synthesis strategies that have been developed and widely applied for obtaining organic dye nanoparticles are first discussed – reprecipitation method and ion-association method. Next, their unique size-dependent optical properties are introduced. More attention is paid to their novel and interesting emission behavior – aggregation-induced enhanced emission (AIEE) that closely relates to the restriction of intramolecular twisting motion. Finally, concluding remarks and the future outlook of research in this area are provided.

Graphical Abstract


Aggregation-induced enhanced emission (AIEE) Fluorescent organic nanoparticles Ion-association method Organic dye nanoparticles Reprecipitation method Restriction of intramolecular rotation Size-dependent optical properties 


  1. 1.
    Silinsh EA (1980) Organic molecular crystals: their electronic states. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Fu H-B, Yao JN (2001) Size effects on the optical properties of organic nanoparticles. J Am Chem Soc 123:1434–1439CrossRefGoogle Scholar
  3. 3.
    Jinshui L, Lun W, Feng G, Yongxing L, Yun W (2003) Novel fluorescent colloids as a DNA fluorescence probe. Anal Bioanal Chem 377:346–349CrossRefGoogle Scholar
  4. 4.
    Kim HY, Bjorklund TG, Lim S-H, Bardeen CJ (2003) Spectroscopic and photocatalytic properties of organic tetracene nanoparticles in aqueous solution. Langmuir 19:3941–3946CrossRefGoogle Scholar
  5. 5.
    Shekunov BY, York P (2000) Crystallization processes in pharmaceutical technology and drug delivery design. J Cryst Growth 211:122–136CrossRefGoogle Scholar
  6. 6.
    Masuhara H, Nakanishi H, Sasaki K (eds) (2003) Single organic nanoparticles. Springer, BerlinGoogle Scholar
  7. 7.
    Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev 3:906–918CrossRefGoogle Scholar
  8. 8.
    Waggoner A (2006) Fluorescent labels for proteomics and genomics. Curr Opin Chem Biol 10:62–66CrossRefGoogle Scholar
  9. 9.
    Mason WT (1999) Fluorescent and luminescent probes for biological activity, 2nd edn. Academic, LondonGoogle Scholar
  10. 10.
    Tang CW, Van Slyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915CrossRefGoogle Scholar
  11. 11.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent label. Nat Methods 5:763–775CrossRefGoogle Scholar
  12. 12.
    Shinozuka Y, Matsuura M (1983) Wannier exciton in quantum wells. Phys Rev B 28:4878–4881CrossRefGoogle Scholar
  13. 13.
    Pope M, Swenberg CE (1999) Electronic processes in organic crystals and polymers, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  14. 14.
    Kasai H, Kamatani H, Okada S, Oikawa H, Matsuda H, Nakanishi H (1996) Size-dependent colors and luminescences of organic microcrystals. Jpn J Appl Phys 35:L221–L223CrossRefGoogle Scholar
  15. 15.
    Kasai H, Kamatani H, Yoshikawa Y, Okada S, Oikawa H, Watanabe A, Itoh O, Nakanishi H (1997) Crystal size dependence of emission from perylene microcrystals. Chem Lett 11:1181–1182CrossRefGoogle Scholar
  16. 16.
    Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase: theory, experiment, and use. Angew Chem Int Ed 40:4330–4361CrossRefGoogle Scholar
  17. 17.
    Asahi T, Sugiyama T, Masuhara H (2008) Laser fabrication and spectroscopy of organic nanoparticles. Acc Chem Res 41:1790–1798CrossRefGoogle Scholar
  18. 18.
    Nakanishi H, Katagi H (1998) Microcrystals of polydiacetylene derivatives and their linear and nonlinear optical properties. Supramol Sci 5:289–295CrossRefGoogle Scholar
  19. 19.
    Kang P, Chen C, Hao L, Zhu C, Hu Y, Chen Z (2004) A novel sonication route to prepare anthracene nanoparticles. Mater Res Bull 39:545–551CrossRefGoogle Scholar
  20. 20.
    Xiao D, Xi L, Yang W, Fu H, Shuai Z, Fang Y, Yao J (2003) Size-tunable emission from 1,3-diphenyl-5-(2-anthryl)-2-pyrazoline nanoparticles. J Am Chem Soc 125:6740–6745CrossRefGoogle Scholar
  21. 21.
    Onodera T, Oshikiri T, Katagi H, Kasai H, Okada S, Oikawa H, Terauchi M, Tanaka M, Nakanishi H (2001) Nanowire crystals of π-conjugated organic materials. J Cryst Growth 229:586–590CrossRefGoogle Scholar
  22. 22.
    Vitale SA, Katz JL (2003) Liquid droplet dispersions formed by homogeneous liquid–liquid nucleation: “The Ouzo effect”. Langmuir 19:4105–4110CrossRefGoogle Scholar
  23. 23.
    Yao H, Ou Z, Kimura K (2005) Ion-based organic nanoparticles: synthesis, characterization and optical properties of pseudoisocyanine dye nanoparticles. Chem Lett 34:1108–1109CrossRefGoogle Scholar
  24. 24.
    Kamat PV, Vinodgopal K (1998) Environmental photochemistry with semiconductor nanoparticles. In: Ramamurthy J, Schanze K (eds) Molecular and supramolecular photochemistry. Dekker, New York, pp 307–350Google Scholar
  25. 25.
    Hong Y, Jacky WYL, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun:4332–4353Google Scholar
  26. 26.
    Deans R, Kim J, Machacek MR, Swager TM (2000) A poly(p-phenyleneethynylene) with a highly emissive aggregated phase. J Am Chem Soc 122:8565–8566CrossRefGoogle Scholar
  27. 27.
    Yin S, Peng Q, Shuai Z, Fang W, Wang Y-H, Luo Y (2006) Aggregation-enhanced luminescence and vibronic coupling of silole molecules from first principles. Phys Rev B 73:205409CrossRefGoogle Scholar
  28. 28.
    Davydov AS (1971) Theory of molecular excitons. Plenum, New YorkGoogle Scholar
  29. 29.
    An B-K, Kwon S-K, Jung S-D, Park SY (2002) Enhanced emission and its switching in fluorescent organic nanoparticles. J Am Chem Soc 124:14410–14415CrossRefGoogle Scholar
  30. 30.
    Lim S-J, An B-K, Jung S-D, Chung M-A, Park SY (2004) Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism. Angew Chem Int Ed 43:6346–6350CrossRefGoogle Scholar
  31. 31.
    Bhongale CJ, Chang C-W, Lee C-S, Diau EW-G, Hsu C-S (2005) Relaxation dynamics and structural characterization of organic nanoparticles with enhanced emission. J Phys Chem B 109:13472–13482CrossRefGoogle Scholar
  32. 32.
    Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, Li C, Li Y, Yang G (2007) Aggregation-induced emission enhancement of 2-(2′-hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfer compounds. J Phys Chem B 111:5861–5868CrossRefGoogle Scholar
  33. 33.
    Nakagaki R, Kobayashi T, Nagakura S (1978) Luminescence properties and the primary process of photochromism of 2-(2-hydroxyphenyl)benzothiazole. Bull Chem Soc Jpn 51:1671–1675CrossRefGoogle Scholar
  34. 34.
    Sun Y-Y, Liao J-H, Fang J-M, Chou P-T, Shen C-H, Hsu C-W, Chen L-C (2006) Fluorescent organic nanoparticles of benzofuran–naphthyridine linked molecules: formation and fluorescence enhancement in aqueous media. Org Lett 8:3713–3716CrossRefGoogle Scholar
  35. 35.
    Yao H, Yamashita M, Kimura K (2009) Organic styryl dye nanoparticles: synthesis and unique spectroscopic properties. Langmuir 25:1131–1137CrossRefGoogle Scholar
  36. 36.
    Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB (2000) Cyanines during the 1990s: a review. Chem Rev 100:1973–2012CrossRefGoogle Scholar
  37. 37.
    Strehmel B, Seifert H, Rettig W (1997) Photophysical properties of fluorescence probes 2: a model of multiple fluorescence for stilbazolium dyes studied by global analysis and quantum chemical calculations. J Phys Chem B 101:2232–2243CrossRefGoogle Scholar
  38. 38.
    Sczepan M, Rettig W, Tolmachev AI, Kurdyukov VV (2001) The role of internal twisting in the photophysics of stilbazolium dyes. Phys Chem Chem Phys 3:3555–3561CrossRefGoogle Scholar
  39. 39.
    Ou Z, Yao H, Kimura K (2007) Preparation and optical properties of organic nanoparticles of porphyrin without self-aggregation. J Photochem Photobiol A Chem 189:7–14CrossRefGoogle Scholar
  40. 40.
    McIntyre JO, Fingleton B, Wells KS, Piston DW, Lynch CC, Gautam S, Matrisian LM (2004) Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumor-associated matrix metalloproteinase-7 activity. Biochem J 377:617–628CrossRefGoogle Scholar
  41. 41.
    An B-K, Kwon S-K, Park SY (2007) Photopatterned arrays of fluorescent organic nanoparticles. Angew Chem Int Ed 46:1978–1982CrossRefGoogle Scholar
  42. 42.
    Moore JS, Bharathi P, Devadoss C (1996) Energy transfer in dendritic macromolecules: molecular size effects and the role of an energy gradient. J Am Chem Soc 118:9635–9644CrossRefGoogle Scholar
  43. 43.
    Tang CW, VanSlyke SA, Chen CH (1989) Electroluminescence of doped organic thin films. J Appl Phys 65:3610–3616CrossRefGoogle Scholar
  44. 44.
    Mattoussi H, Murata H, Merritt CD, Iizumi Y, Kido J, Kafafi ZH (1999) Photoluminescence quantum yield of pure and molecularly doped organic solid films. J Appl Phys 86:2642–2650CrossRefGoogle Scholar
  45. 45.
    Peng AD, Xiao DB, Ma Y, Yang WS, Yao JN (2005) Tunable emission from doped 1,3,5-triphenyl-2-pyrazoline organic nanoparticles. Adv Mater 17:2070–2073CrossRefGoogle Scholar
  46. 46.
    Porter G (1978) Pure and applied photochemistry. Pure Appl Chem 50:263–271CrossRefGoogle Scholar
  47. 47.
    Demchenko AP (2010) Collective effects influencing fluorescence emission. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:107–132Google Scholar
  48. 48.
    Losytskyy MY, Yashchuk VM (2010) Fluorescent J-aggregates and their biological applications. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:135–157Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Graduate School of Material ScienceUniversity of HyogoHyogoJapan

Personalised recommendations