Constraint-Based Strategy for Pairwise RNA Secondary Structure Prediction

  • Olivier Perriquet
  • Pedro Barahona
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5816)

Abstract

RNA secondary structure prediction depends on context. When only a few (sometimes putative) RNA homologs are available, one of the most famous approach is based on a set of recursions proposed by Sankoff in 1985. Although this modus operandi insures an algorithmically optimal result, the main drawback lies in its prohibitive time and space complexities. A series of heuristics were developed to face that difficulty and turn the recursions usable. In front of the inescapable intricacy of the question when handling the full thermodynamic model, we come back in the present paper to a biologically simplified model that helps focusing on the algorithmic issues we want to overcome. We expose our ongoing developments by using the constraints framework which we believe is a powerful paradigm for heuristic design. We give evidence that the main heuristics proposed by others (structural and alignment banding, multi-loop restriction) can be refined in order to produce a substantial gain both in time computation and space requirements. A beta implementation of our approach, that we named ARNICA, exemplify that gain on a sample set that remains unaffordable to other methods. The sources and sample tests of ARNICA are available at http://centria.di.fct.unl.pt/~op/arnica.tar.gz

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bro99]
    Brown, J.W.: The Ribonuclease P database. NAR 27(314) (1999), http://www.mbio.ncsu.edu/RNaseP/
  2. [CMR08]
    Capriotti, E., Marti-Renom, M.A.: Computational RNA structure prediction. Current Bioinformatics 3(1), 32–45 (2008)CrossRefGoogle Scholar
  3. [DE06]
    Dowell, R.D., Eddy, S.R.: Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints. BMC Bioinformatics 7, 400 (2006)CrossRefGoogle Scholar
  4. [ED94]
    Eddy, S.R., Durbin, R.: RNA sequence analysis using covariance models. NAR 22, 2079–2088 (1994)CrossRefGoogle Scholar
  5. [EGG88]
    Eppstein, D., Galil, Z., Giancarlo, R.: Speeding up dynamic programming. In: Proceedings of the29th IEEE Annual Symposium on Foundations of Computer Science, White Plains, NY, pp. 488–496. IEEE Computer Society Press, Los Alamitos (1988)Google Scholar
  6. [EGGI92a]
    Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming I: linear cost functions. J. ACM 39(3), 519–545 (1992)MathSciNetCrossRefMATHGoogle Scholar
  7. [EGGI92b]
    Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming II: convex and concave cost functions. J. ACM 39(3), 546–567 (1992)MathSciNetCrossRefMATHGoogle Scholar
  8. [GG04]
    Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5(1) (September 2004)Google Scholar
  9. [HBS04]
    Hofacker, I.L., Bernhart, S.H., Stadler, P.F.: Alignment of RNA base pairing probability matrices. Bioinformatics 20(14), 2222–2227 (2004)CrossRefGoogle Scholar
  10. [HLSG05]
    Havgaard, J.H., Lyngsø, R.B., Stormo, G.D., Gorodkin, J.: Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21(9), 1815–1824 (2005)CrossRefGoogle Scholar
  11. [Hof03]
    Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Res 31(13), 3429–3431 (2003)CrossRefGoogle Scholar
  12. [Hol05]
    Holmes, I.: Accelerated probabilistic inference of RNA structure evolution. BMC Bioinformatics 6(1) (2005)Google Scholar
  13. [HSM07]
    Harmanci, A.O., Sharma, G., Mathews, D.H.: Efficient pairwise RNA structure prediction using probabilistic alignment constraints in dynalign. BMC Bioinformatics, 8 (April 2007)Google Scholar
  14. [HTG07]
    Havgaard, J.H., Torarinsson, E., Gorodkin, J.: Fast pairwise structural RNA alignments by pruning of the dynamical programming matrix. PLoS Computational Biology 3(10), e193 (2007)CrossRefGoogle Scholar
  15. [JTZ89]
    Jaeger, J.A., Turner, D.H., Zuker, M.: Improved predictions of secondary structures for RNA. PNAS 86, 7706–7710 (1989)CrossRefGoogle Scholar
  16. [KH03]
    Knudsen, B., Hein, J.: Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res. 31(13), 3423–3428 (2003)CrossRefGoogle Scholar
  17. [McC90]
    McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29, 1105–1119 (1990)CrossRefGoogle Scholar
  18. [MSZT99]
    Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. JMB 288, 911–940 (1999)CrossRefGoogle Scholar
  19. [MT02]
    Mathews, D.H., Turner, D.H.: Dynalign: An algorithm for finding the secondary structure common to two RNA sequences. JMB (in press, 2002)Google Scholar
  20. [NJ80]
    Nussinov, R., Jacobson, A.B.: Fast algorithm for predicting the secondary structure of single stranded RNA. PNAS 77, 6309–6313 (1980)CrossRefGoogle Scholar
  21. [NW70]
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)CrossRefGoogle Scholar
  22. [OH98]
    O’Brien, E.A., Higgins, D.G.: Empirical estimation of the reliability of ribosomal RNA alignments. Bioinformatics 14(10), 830–838 (1998)CrossRefGoogle Scholar
  23. [San85]
    Sankoff, D.: Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math. 45(5), 810–825 (1985)MathSciNetCrossRefMATHGoogle Scholar
  24. [SW81]
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. JMB 147, 195–197 (1981)CrossRefGoogle Scholar
  25. [SYKB07]
    Shapiro, B.A., Yingling, Y.G., Kasprzak, W., Bindewald, E.: Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol. 17(2), 157–165 (2007)CrossRefGoogle Scholar
  26. [THG07]
    Torarinsson, E., Havgaard, J.H.H., Gorodkin, J.: Multiple structural alignment and clustering of RNA sequences. Bioinformatics (February 2007)Google Scholar
  27. [Wat83]
    Watermann, M.S.: Sequence alignments in the neighborhood of the optimum with general application to dynamic programming. Applied Mathematical Sciences 80, 3123–3124 (1983)MATHGoogle Scholar
  28. [ZMT99]
    Zuker, M., Mathews, D.H., Turner, D.H.: Algorithms and thermodynamics for RNA secondary structure prediction. A practical guide. RNA Biochemistry and Biotechnology (1999)Google Scholar
  29. [Zuk03]
    Zuker, M.: MFOLD web server for nucleic acid folding and hybridization prediction. NAR 31(13), 1–10 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Olivier Perriquet
    • 1
  • Pedro Barahona
    • 1
  1. 1.CENTRIA - Centre for Artificial Intelligence - Dep. de InformáticaFCT/UNLCAPARICAPortugal

Personalised recommendations