Skip to main content

Abstract

This chapter is devoted to the study of microspore embryogenesis, a fascinating and important process in plant breeding that involves the reprogramming of microspores from gametophytic development towards a sporophytic pathway, leading to the formation of haploid plants. The aim is to introduce the reader to this useful way of shortening the breeding process and the study in vitro of the initial stages of plant embryogenesis. In this chapter, the discovery of the production of haploid plants by anther culture is discussed, the strategies followed to induce this process, how different factors influence induction, embryo development and plant formation, and the cellular and molecular events associated with microspore embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bajaj YPS (1990) In vitro production of haploids and their use in cell genetics and plant breeding. In: Bajaj YPS (ed) Biotechnology Agriculture and Forestry, vol 12. Haploids in crop improvement I. Springer, Berlin Heidelberg, pp 3–44

    Google Scholar 

  • Barnabás B, Szakács É, Karsai I, Bed Z (2001) In vitro androgenesis of wheat: from fundamentals to practical application. Euphytica 119:211–216

    Article  Google Scholar 

  • Bonet FJ, Olmedilla A (2000) Structural changes during early embryogenesis in wheat pollen. Protoplasma 211:94–102

    Article  Google Scholar 

  • Bonet FJ, Azbaid L, Olmedilla A (1998) Pollen embryogenesis: atavism or totipotency? Protoplasma 202:115–121

    Article  Google Scholar 

  • Boutilier KA, Gines MJ, DeMoor JM, Huang B, Baszczynski CL, Iyer VN, Miki BL (1994) Expression of the BnmNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol Biol 26:1711–1723

    Article  PubMed  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campage MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Cegielska-Taras T, Tykarska T, Szala L, Kuras M, Krzymanski J (2002) Direct plant development from microspore-derived embryos of winter oilseed rape Brassica napus L. ssp. oleifera (DC.) Metzger. Euphytica 124:341–347

    Article  CAS  Google Scholar 

  • Cistué L, Ramos A, Castillo AM, Romagosa I (1994) Production of large number of doubled haploids plants from barley anthers pretreated with high concentrations of mannitol. Plant Cell Rep 13:709–712

    Article  Google Scholar 

  • Cistué L, Ramos A, Castillo AM (1999) Influence of anther pretreatment and culture medium composition on the production of barley doubled haploids from model and low responding cultivars. Plant Cell Tiss Organ Cult 42:163–169

    Article  Google Scholar 

  • Cordewener JHG, Custers JBM, Dons HJM, Vanlookeren Campagne MM (1996) Cytological and biochemical aspects of in vitro androgenesis in higher plants. In: Jain SM, Sopory SK, Veilleux RF (eds) In vitro haploid production in higher plants. Kluwer, Dordrecht, pp 111–124

    Google Scholar 

  • Crosser JS, Lülsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006) Toward doubled-haploid production in the Fabaceae: progress, constraints and opportunities. Crit Rev Plant Sci 25:139–157

    Article  Google Scholar 

  • Crouch ML (1982) Non-zygotic embryos of Brassica napus L. contain embryo-specific storage proteins. Planta 156:520–524

    Article  CAS  Google Scholar 

  • Custers JBM, Cordewener JHG, Nollen Y, Dons HJM, Van Lookeren Campagne MM (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13:267–271

    Article  CAS  Google Scholar 

  • Custers JBM, Cordewener JHG, Fiers MA, Maassen BTH, van Lookeren Campagne MM, Liu CM (2001) Androgenesis in Brassica: a model system to study the initiation of plant embryogenesis. In: Bhojwani SS, Soh WY (eds) Current trends in the embryology of angiosperms. Kluwers, Dordrecht, pp 451–470

    Google Scholar 

  • Ferrie AMR, Palmer CE, Keller WA (1995) Haploid embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 309–344

    Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    CAS  Google Scholar 

  • Forster BP, Heberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375

    Article  PubMed  CAS  Google Scholar 

  • Gland A, Lichter R, Schweiger HG (1988) Genetic and exogenous factors affecting embryogenesis in isolated microspore cultures of B. napus L. J Plant Physiol 132:613–617

    Google Scholar 

  • Grewal RK, Lulsdorf M, Crosser J, Ochatt S, Vandenberg A, Warkentin TD (2009) Doubled-haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28:1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Guha S, Maheshwari SC (1966) Cell division and differentiation of embryoids in the pollen grains of Datura in vitro. Nature 212:97–98

    Article  Google Scholar 

  • Hause G, Hahn H (1998) Cytological characterization of multicellular structures in microspore cultures of Brassica napus L. Bot Acta 111:204–211

    Google Scholar 

  • Hoekstra S, van Zijderveld MH, Louwerse JD, Heidekamp F, van der Mark F (1992) Anther and microspore culture of Hordeum vulgare L. cv Igri. Plant Sci 86:89–96

    Article  CAS  Google Scholar 

  • Hosp J, Maraschin SF, Touraev A, Boutilier K (2007) Functional genomics of microspore embryogenesis. Euphytica 158:275–285

    Article  Google Scholar 

  • Hu TC, Kasha KJ (1997) Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary co-culture. Plant Cell Rep 16:520–525

    Article  CAS  Google Scholar 

  • Huang B, Bird S, Kemble R, Simmonds D, Keller W, Miki B (1990) Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas. Plant Cell Rep 8:594–597

    Article  Google Scholar 

  • Ilic-Grubor K, Attree SM, Fowke LC (1998) Comparative morphological study of zygotic and microspore-derived embryos of Brassica napus L. as revealed by scanning electron microscopy. Ann Bot 82:157–165

    Article  Google Scholar 

  • Jacquard C, Asakaviciute R, Hamalian AM, Sangwan RS, Devaux P, Clement C (2006) Barley anther culture: effects of annual cycle and spike position on microspore embryogenesis and albinism. Plant Cell Rep 25:375–381

    Article  PubMed  CAS  Google Scholar 

  • Joosen R, Cordewener J, Supena EDJ, Vost O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custer J, Boutelier K (2007) Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of Brassica napus microspore-derived embryo development. Plant Physiol 144:155–172

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Jang IC, Kim JA, Park EJ, Yoon M, Lee Y (2008) Embryogenesis and plant regeneration of hot pepper (Capsicum annuum L.) through isolated microspore culture. Plant Cell Rep 27:425–434

    Article  PubMed  CAS  Google Scholar 

  • Kyo M, Harada H (1986) Control of the developmental pathway of tobacco pollen in vitro. Planta 168:427–432

    Article  CAS  Google Scholar 

  • Kyo M, Harada H (1990) Specific phosphoproteins in the initial period of tobacco pollen embryogenesis. Planta 182:58–63

    Article  CAS  Google Scholar 

  • Kyo M, Hattori S, Yamaji N, Pechan P, Yuasa Y, Fukui H (2003) Cloning and characterization of cDNAs associated with the embryogenic dedifferentiation of tobacco immature pollen grains. Plant Sci 164:1057–1066

    Article  CAS  Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434

    Google Scholar 

  • Magnard JL, Le Deunff E, Domenech J, Rogowsky PM, Testillano PS, Rougier M, Risueño MC, Vergne P, Dumas C (2000) Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. Plant Mol Biol 44:559–574

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari SC, Raschid A, Tyagi AK (1982) Haploids from pollen grains - Retrospect and prospect. Am J Bot 69:865–879

    Article  Google Scholar 

  • Malik MR, Wang F, Dirpaul JM, Zhou N, Polowick PL, Ferri AMR, Krochko JE (2007) Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus. Plant Physiol 144:134–154

    Article  PubMed  CAS  Google Scholar 

  • Maluszynski M, Kasha KJ, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants, a manual. Kluwer, Dordrecht, pp 309–335

    Google Scholar 

  • Maraschin SF, Vennik M, Lamers GEM, Spaink HP, Wang M (2004) Time-lapse tracking of barley androgenesis reveals position-determined cell death within pro-embryos. Planta 220:531–540

    Article  CAS  Google Scholar 

  • Maraschin SF, De Priester W, Spaink HP, Wang M (2005a) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 417:1711–1726

    Article  CAS  Google Scholar 

  • Maraschin SF, Gaussand G, Pulido A, Olmedilla A, Lamers GEM, Korthout H, Spaink HP, Wang M (2005b) Programmed cell death is involved in the transition from multicellular structures to globular embryos in barley androgenesis. Planta 221:459–470

    Article  CAS  Google Scholar 

  • Maraschin SF, Caspers M, Potokina E, Wülfert F, Graner A, Spaink HP, Wang M (2006) cDNA array analysis of stressed induced gene expression in barley androgenesis. Physiol Plant 127:535–550

    Article  CAS  Google Scholar 

  • Mordhorst AP, Toonen MAJ, de Vries SC (1997) Plant embryogenesis. Crit Rev Plant Sci 16:535–576

    Google Scholar 

  • Muñoz-Amatriaín M, Svensson JT, Castillo AM, Cistué L, Close TJ, Vallés MP (2006) Transcriptome analysis of barley anthers: effect of mannitol treatment on microspore embryogenesis. Physiol Plant 127:551–560

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nitsch C, Norreel B (1973) Effet d’un choc thermique sur le pouvoir embryogène du pollen de Datura culturé dans l’anthère ou isolé de l’anthère. C R Acad Sci Paris 276:303–306

    Google Scholar 

  • Pechan PM, Smykal P (2001) Androgenesis: affecting the fate of the male gametophyte. Physiol Plant 111:1–8

    Article  CAS  Google Scholar 

  • Pretova A, De Ruijter NCA, Van Lammeren AAM, Schel JHN (1993) Structural observations during androgenic microspore culture of the 4cl genotype of Zea mays L. Euphytica 65:61–69

    Article  Google Scholar 

  • Pulido A, Castillo A, Vallés MP, Olmedilla A (2002) In search of molecular markers for androgenesis. Biologia 57:29–36

    CAS  Google Scholar 

  • Pulido A, Bakos F, Castillo A, Vallés MP, Barnabas B, Olmedilla A (2005) Cytological and ultrastructural changes induced in anther and isolated-microspore cultures in barley: Fe deposits in isolated-microspore cultures. J Struct Biol 149:170–181

    Article  PubMed  CAS  Google Scholar 

  • Pulido A, Bakos F, Castillo A, Vallés MP, Barnabas B, Olmedilla A (2006a) Influence of Fe concentration in the medium of multicellular pollen grains and haploid plants induced by mannitol pretreatment in barley (Hordeum vulgare L.). Protoplasma 228:101–106

    Article  PubMed  CAS  Google Scholar 

  • Pulido A, Hernando A, Bakos F, Méndez E, Devic M, Barnabás B, Olmedilla A (2006b) Hordeins are expressed in microspore-derived embryos and also during male gametophytic development and very early stages of seed development. J Exp Bot 57:2837–2846

    Article  PubMed  CAS  Google Scholar 

  • Raghavan V (1986) Pollen embryogenesis. In: Barlow PW, Green PB, Wylie CC (eds) Embryogenesis in angiosperms: a developmental and experimental study. Cambridge University Press, New York, pp 152–189

    Google Scholar 

  • Raghavan V (1997) Embryogenic development of pollen grains. In: Raghavan V (ed) Molecular embryology of flowering plants. Cambridge University Press, Cambridge, pp 500–523

    Chapter  Google Scholar 

  • Reynolds TL (1997) Pollen embryogenesis. Plant Mol Biol 33:1–10

    Article  PubMed  CAS  Google Scholar 

  • Reynolds TL, Crawford RL (1996) Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in breed wheat (Triticum aestivum). Plant Mol Biol 32:823–829

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-García MI, Olmedilla A, Alché JD (2000) The contributions and limitations of microscopy in studying the mechanisms of pollen embryogenesis. In: Bohanec B (ed) Biotechnological approaches for utilization of gametic cells. COST 824, European Communities, Belgium, pp 253–259

    Google Scholar 

  • Sangwan RS, Sangwan-Norreel BS (1996) Cytological and biochemical aspects of in vitro androgenesis in higher plants. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro production of higher plants. Kluwer, Dordrecht, pp 95–109

    Google Scholar 

  • Shariatpanahi ME, Belogradova K, Hessamvaziri L, Heberle-Bors E, Touraev A (2006) Efficient embryogenesis and regeneration in freshly isolated and cultured wheat (Triticum aestivum L.) microspores without stress pre-treatment. Plant Cell Rep 25:1294–1299

    Article  PubMed  CAS  Google Scholar 

  • Shimakura K (1934) The capability of continuing divisions of Tradescantia pollen mother-cells in saccharose solution. Cytologia 5:363–372

    Google Scholar 

  • Shivanna KR (2003) Induction of haploids from pollen grains. In: Enfield NH (ed) Pollen biology and biotechnology. Science Publishers, New Hampshire, pp 219–230

    Google Scholar 

  • Smykal P, Pechan PM (2000) Stress, as assessed by the appearance of sHsp transcripts, is required but not sufficient to initiate androgenesis. Physiol Plant 110:135–143

    Article  CAS  Google Scholar 

  • Soriano M, Cistué L, Vallés MP, Castillo AM (2007) Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.). Plant Cell Tiss Organ Cult 91:225–234

    Article  CAS  Google Scholar 

  • Sunderland N (1974) Anther culture as means of haploid induction. In: Kasha KJ (ed) Haploids in higher plants: advances and potential. University of Guelph, Guelph, Ontario, pp 91–122

    Google Scholar 

  • Telmer CA, Newcomb W, Simmonds DH (1995) Cellular changes during heat shock induction and embryo development of cultured microspores of Brassica napus cv. Topas. Protoplasma 185:106–112

    Article  Google Scholar 

  • Testillano PS, Ramírez C, Domenech J, Coronado MJ, Vergne P, Matthys-Rochon E, Risueño MC (2002) Young microspore-derived maize embryos show two domains with defined features also present in zygotic embryogenesis. Int J Dev Biol 46:1035–1047

    PubMed  CAS  Google Scholar 

  • Touraev A, Pfosser M, Vicente O, Heberle-Bors E (1996a) Stress as the major signal controlling the developmental fate of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta 200:144–152

    Article  CAS  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996b) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperature. Sex Plant Reprod 9:209–215

    Article  Google Scholar 

  • Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Plant Sci 2:297–302

    Google Scholar 

  • Touraev A, Pfosser M, Heberle-Bors E (2001) The microspore: a haploid multipurpose cell. Adv Bot Res 35:53–109

    Article  Google Scholar 

  • Tsuwamoto R, Fukuoka H, Takahata Y (2007) Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus. Planta 225:641–652

    Article  PubMed  CAS  Google Scholar 

  • Vrinten PL, Nakamura T, Kasha K (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare L.). Plant Mol Biol 41:455–463

    Article  PubMed  CAS  Google Scholar 

  • Wojnarowicz G, Jacquard C, Devaux P, Sanqwan RS, Clement C (2002) Influence of copper sulfate on anther culture in barley (Hordeum vulgare). Plant Sci 162:843–847

    Article  CAS  Google Scholar 

  • Zaki MAM, Dickinson HG (1990) Structural changes during the first divisions of embryos resulting from anther and free microspore culture in Brassica napus. Protoplasma 156:149–162

    Article  Google Scholar 

  • Zaki MAM, Dickinson HG (1991) Microspore-derived embryos in Brassica: The significance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Reprod 4:48–55

    Article  Google Scholar 

  • Zarsky V, Garrido D, Rihova L, Tupy J, Vicente O, Heberle-Bors E (1992) Derepression of the cell cycle by starvation is involved in the induction of tobacco pollen embryogenesis. Sex Plant Reprod 5:189–194

    Article  Google Scholar 

  • Zarsky V, Garrido D, Eller N, Tupy J, Vicente O, Schoffl F, Heberle-Bors E (1995) The expression of a small heat-shock gene is activated during induction of tobacco pollen embryogenesis by starvation. Plant Cell Environ 18:139–147

    Article  CAS  Google Scholar 

  • Zhao JP, Newcomb W, Simmonds D (2003) Heat-shock proteins 70 kDa and 19 kDa are not required for induction embryogenesis of Brassica napus L. cv. Topas. Plant Cell Physiol 44:1417–1421

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Salvatore Pelliccione, Irene Serrano and Rosa Luque for their scientific contribution and technical help, and Dr. J. Trout for revising the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Olmedilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olmedilla, A. (2010). Microspore Embryogenesis. In: Pua, E., Davey, M. (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04670-4_2

Download citation

Publish with us

Policies and ethics