Skip to main content

Nanostructural Units in Disordered Network-Forming Materials and the Origin of Intermediate Range Order

  • Chapter
  • First Online:
Book cover Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials

Part of the book series: Lecture Notes in Physics ((LNP,volume 795))

Abstract

Disordered network-forming materials are characterized by structural order extending well beyond the first shell of neighbors. For these reasons, reliable atomic-scale modeling is ideally suited to complement experiments in the search of the microscopic origins of this behavior. A key to understand why these systems have specific structural properties is to focus on the nanostructural units by which they are composed. By analyzing the role played by these units, one is able to put forth a valuable rationale accounting for the occurrence of intermediate range order. In this review, we present recent results obtained via first-principles molecular dynamics on a set of disordered network-forming materials, with special emphasis on the prototypical system GeSe2. In a short introduction we begin with explicit examples of differences, at the structure factor and pair correlation level, between networks exhibiting intermediate range order and those purely disordered at any length scale. Concerning our theoretical approach, we rely on density functional theory and first-principles molecular dynamics to follow the time trajectories at finite temperature of these networks and obtain statistical averages to be compared with the experimental quantities. Specific methodological issues pertaining to the simulation of disordered materials are analyzed in detail (size of the computational cell, role of exchange–correlation functional, and production of an amorphous phase). Then, three specific points are addressed by considering both experimental and simulation results: first, the atomic-scale signature of intermediate range order as it manifests itself via the appearance of the first sharp diffraction peak in the total neutron structure factor; second, the correlation existing between fluctuations of concentration on the intermediate distances scale and the shape taken by the partial structure factors; and third, the establishment of the nanostructural units responsible for the occurrence of the first sharp diffraction peak in the concentration–concentration structure factor. All these examples are substantiated by extensive reference made to existing and ongoing first-principles molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Elliott, Nature 354, 445 (1991).

    Article  CAS  ADS  Google Scholar 

  2. D. L. Price, S. C. Moss, R. Reijers, M. L. Saboungi, S. Susman, J. Phys. C 21, L1069 (1988).

    Article  ADS  Google Scholar 

  3. S. R. Elliott, Phys. Rev. Lett. 67, 711 (1991).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. P. Boolchand, W. J. Bresser, Phil. Mag. B 80, 1757 (2000).

    CAS  ADS  Google Scholar 

  5. I. T. Penfold, P. S. Salmon, Phys. Rev. Lett. 67, 97 (1991).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. C. Massobrio, A. Pasquarello, R. Car, Phys. Rev. B 64, 144205 (2001).

    Article  ADS  CAS  Google Scholar 

  7. I. Petri, P. S. Salmon, W. S. Howells, J. Phys. Condens. Matter 11, 10219 (1999).

    Article  CAS  ADS  Google Scholar 

  8. C. Massobrio, F. H. M. van Roon, A. Pasquarello, S. W. De Leeuw, J. Phys. Condens. Matter 12, L697 (2000).

    Article  CAS  ADS  Google Scholar 

  9. S. C. Moss, D. L. Price, Physics of Disordered Materials, ed. D. Adler, H. Fritzsche, S. R. Ovshinsky (Plenum, New York, 1985), p. 77.

    Google Scholar 

  10. S. R. Elliott, J. Phys. Condens. Matter 4, 7661 (1992).

    Article  CAS  ADS  Google Scholar 

  11. L. E. Busse, S. R. Nagel, Phys. Rev. Lett. 47, 1848 (1981).

    Article  CAS  ADS  Google Scholar 

  12. L. E. Busse, Phys. Rev. B 29, 3639 (1984).

    Article  CAS  ADS  Google Scholar 

  13. P. M. Bridenbaugh et al., Phys. Rev. B 20, 4140 (1979).

    Article  CAS  ADS  Google Scholar 

  14. J. C. Phillips, J. Non-Cryst. Solids 43, 37 (1981).

    Article  CAS  ADS  Google Scholar 

  15. A. C. Wright et al., Diffusion Defect Data, 53–54, 255 (1987).

    Article  Google Scholar 

  16. P. S. Salmon, Proc. R. Soc. London A 445, 351 (1994).

    Article  CAS  ADS  Google Scholar 

  17. M. Wilson, P. A. Madden, Phys. Rev. Lett. 72, 3033 (1994).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. P. H. Gaskell, D. J. Wallis, Phys. Rev. Lett. 76, 66 (1996).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. P. Vashishta, R. K. Kalia, G. A. Antonio, I. Ebbsjö, Phys. Rev. Lett. 62, 1651 (1989).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. P. Vashishta, R. K. Kalia, J. P. Rino, I. Ebbsjö, Phys. Rev. B 41, 12197 (1990).

    Article  CAS  ADS  Google Scholar 

  21. H. Iyetomi, P. Vashishta, R. K. Kalia, Phys. Rev. B 43, 1726 (1991).

    Article  ADS  Google Scholar 

  22. M. Wilson, P. A. Madden, Phys. Rev. Lett. 80, 532 (1998).

    Article  CAS  ADS  Google Scholar 

  23. C. Massobrio, A. Pasquarello, J. Chem. Phys. 114, 7976 (2001).

    Article  CAS  ADS  Google Scholar 

  24. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Born, R. Oppenheimer, Ann. Phys. (Leipzig). 84, 457 (1927).

    CAS  ADS  Google Scholar 

  26. W. Kohn, L. J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  27. J. P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  28. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  ADS  Google Scholar 

  30. R. Feynman, Phys. Rev. 56, 340 (1939).

    Article  MATH  CAS  ADS  Google Scholar 

  31. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. G. Galli, M. Parrinello, J. Chem. Phys. 95, 7504 (1991).

    Article  CAS  ADS  Google Scholar 

  33. C. Massobrio, A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 2342 (1998).

    Article  CAS  ADS  Google Scholar 

  34. C. Massobrio, A. Pasquarello, R. Car, J. Am. Chem. Soc. 121, 2943 (1999).

    Article  CAS  Google Scholar 

  35. C. Massobrio, A. Pasquarello, Phys. Rev. B 75, 014206 (2007).

    Article  ADS  CAS  Google Scholar 

  36. C. Massobrio, A. Pasquarello, Phys. Rev. B 77, 144207 (2008).

    Article  ADS  CAS  Google Scholar 

  37. M. J. Haye, C. Massobrio, A. Pasquarello, A. De Vita, S. W. De Leeuw, R. Car, Phys. Rev. B 58, R14661 (1998).

    Article  CAS  ADS  Google Scholar 

  38. M. Celino, C. Massobrio, Phys. Rev. Lett. 90, 125502 (2003).

    Article  PubMed  ADS  CAS  Google Scholar 

  39. J. C. Mauro, A. K. Varshneya, J. Am. Ceram. Soc. 89, 2323 (2006).

    Article  CAS  Google Scholar 

  40. J. C. Mauro, A. K. Varshneya, J. Am. Ceram. Soc. 90, 192 (2007).

    Article  CAS  Google Scholar 

  41. R. Colle, D. Salvetti, Theor. Chim. Acta 37, 329 (1975).

    Article  CAS  Google Scholar 

  42. J. Sarnthein, A. Pasquarello, R. Car, Phys. Rev. Lett. 74, 4682 (1995).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. J. Sarnthein, A. Pasquarello, R. Car, Phys. Rev. B 52, 12690 (1995).

    Article  CAS  ADS  Google Scholar 

  44. M. Cobb, D. A. Drabold, R. L. Cappelletti, Phys. Rev. B 54, 12162 (1996).

    Article  CAS  ADS  Google Scholar 

  45. M. Cobb, D. A. Drabold, Phys. Rev. B 56, 3054 (1997).

    Article  CAS  ADS  Google Scholar 

  46. C. Massobrio, A. Pasquarello, Phys. Rev. B 77, 144207 (2008).

    Article  ADS  CAS  Google Scholar 

  47. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  CAS  ADS  Google Scholar 

  48. R. V. Kulkarni, W. G. Aulbur, D. Stroud, Phys. Rev. B 55, 6896 (1997).

    Article  CAS  ADS  Google Scholar 

  49. P. S. Salmon, J. Phys. F 18, 2345 (1988).

    Article  CAS  ADS  Google Scholar 

  50. J. P. Gabathuler, S. Steeb, Z. Naturforsch. Teil A 34, 1314 (1979).

    Google Scholar 

  51. F. H. M. van Roon, C. Massobrio, E. de Wolff, S. W. de Leeuw, J. Chem. Phys. 113, 5425 (2000).

    Article  ADS  Google Scholar 

  52. The relationship between the three sets of partial structure factors commonly used (Faber-Ziman, Ashcroft-Langreth and Bhatia-Thornton) can be found in Y. Waseda, The Structure of Non-Crystalline Materials, (McGraw-Hill, New York, 1980).

    Google Scholar 

  53. I. Petri, P. S. Salmon, H. E. Fischer, Phys. Rev. Lett. 84, 2413 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  54. C. Massobrio, A. Pasquarello, Phys. Rev. B 68, 020201(R) (2003).

    Article  ADS  CAS  Google Scholar 

  55. D. L. Price, M. L. Saboungi, A. C. Barnes, Phys. Rev. Lett. 81, 3207 (1998).

    Article  CAS  ADS  Google Scholar 

  56. P. S. Salmon, Proc. R. Soc. London A 437, 591 (1992).

    Article  CAS  ADS  Google Scholar 

  57. C. Massobrio, M. Celino, A. Pasquarello, J. Phys. Condens. Matter 15, S1537 (2003).

    Article  CAS  ADS  Google Scholar 

  58. P. Boolchand, W. J. Bresser, Philos. Mag. B 80, 1757 (2000).

    CAS  ADS  Google Scholar 

  59. R. W. Johnson, D. L. Price, S. Susman, M. Arai, T. I. Morrison, G. K. Shenoy, J. Non-Cryst. Solids 83, 251 (1986).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Massobrio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Massobrio, C. (2010). Nanostructural Units in Disordered Network-Forming Materials and the Origin of Intermediate Range Order. In: Massobrio, C., Bulou, H., Goyhenex, C. (eds) Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials. Lecture Notes in Physics, vol 795. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04650-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04650-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04649-0

  • Online ISBN: 978-3-642-04650-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics