Collective Electron Dynamics in Metallic and Semiconductor Nanostructures

  • G. ManfrediEmail author
  • P.-A. Hervieux
  • Y. Yin
  • N. CrouseillesEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 795)


We review different approaches to the modeling and numerical simulation of the nonlinear electron dynamics in metallic and semiconductor nanostructures. Depending on the required degree of sophistication, such models go from the full N-body dynamics (configuration interaction), to mean-field approaches such as the time-dependent Hartree equations, down to macroscopic models based on hydrodynamic equations. The time-dependent density functional theory and the local-density approximation – which have become immensely popular during the last two decades – can be understood as an upgrade of the Hartree approach allowing one to include, at least approximately, some effects that go beyond the mean-field. Alternative methods, based on Wigner’s phase-space representation of quantum mechanics, are also described. Wigner’s approach has the advantage of permitting a more straightforward comparison between semiclassical and fully quantum results. As an illustrative example, the many-electron dynamics in a semiconductor quantum well is studied numerically, using both a mean-field approach (Wigner–Poisson system) and a quantum hydrodynamical model. Finally, the above methods are extended to include the spin degrees of freedom of the electrons. The local-spin-density approximation is used to investigate the linear electron response in metallic nanostructures. The modeling of nonlinear spin effects is sketched within the framework of Wigner’s phase-space dynamics.


Wigner Function Vlasov Equation Semiconductor Nanostructures Poisson System Hartree Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. L. Eesley, Phys. Rev. Lett. 51, 2140 (1983).ADSCrossRefGoogle Scholar
  2. 2.
    S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, Phys. Rev. Lett. 59, 1962 (1987).PubMedADSCrossRefGoogle Scholar
  3. 3.
    C. Suárez, W. E. Bron, and T. Juhasz, Phys. Rev. Lett. 75, 4536 (1995).PubMedADSCrossRefGoogle Scholar
  4. 4.
    R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. B 51, 11433 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, Phys. Rev. B 50, 15337 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, Chem. Phys. 251, 181 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Bauer and M. Aeschlimann, J. Electr. Spectr. 124, 225 (2002).CrossRefGoogle Scholar
  8. 8.
    W. Rudolph, P. Dorn, X. Liu, N. Vretenar, and R. Stock, Appl. Surf. Sci. 208–209, 327 (2003).CrossRefGoogle Scholar
  9. 9.
    J-S. Lauret, C. Voisin, G. Cassabois, C. Delalande, Ph. Roussignol, O. Jost, and L. Capes, Phys. Rev. Lett. 90, 057404 (2003).PubMedADSCrossRefGoogle Scholar
  10. 10.
    R. Schlipper, R. Kusche, B. v. Issendorff, H. Haberland, Appl. Phys. A 72, 255–259 (2001).ADSCrossRefGoogle Scholar
  11. 11.
    E. E. B. Campbell, K. Hansen, K. Hoffmann, G. Korn, M. Tchaplyguine, M. Wittmann, and I. V. Hertel, Phys. Rev. Lett. 84, 2128 (2000).PubMedADSCrossRefGoogle Scholar
  12. 12.
    C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, and M. Broyer, Phys. Rev. Lett. 85, 2200 (2000).PubMedADSCrossRefGoogle Scholar
  13. 13.
    M. Nisoli, S. Stagira, S. De Silvestri, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, Phys. Rev. Lett. 78, 3575 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    B. Lamprecht, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 83, 4421 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, New York, 1995).Google Scholar
  16. 16.
    R. A. Molina, D. Weinmann, and R. A. Jalabert, Phys. Rev. B 65, 155427 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    D. F. Zaretsky, Ph. A. Korneev, S. V. Popruzhenko, and W. Becker, J. Phys. B 37, 4817 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    G. Manfredi and P.-A. Hervieux, Phys. Rev. B 70, 201402(R) (2004).ADSCrossRefGoogle Scholar
  19. 19.
    G. Manfredi and P.-A. Hervieux, Phys. Rev. B 72, 155421 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    G. Manfredi and P.-A. Hervieux, Optics Lett. 30, 3090 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    J. F. Dobson, Phys. Rev. B 46, 10163 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    D. Loss, D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    P. Zoller et al., Eur. J. Phys. 36, 203 (2005).ADSGoogle Scholar
  24. 24.
    J. Gorman, D. G. Hasko, and D. A. Williams, Phys. Rev. Lett. 95, 090502 (2005).PubMedADSCrossRefGoogle Scholar
  25. 25.
    J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 93, 186802 (2004).PubMedADSCrossRefGoogle Scholar
  26. 26.
    E. Beaurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).PubMedADSCrossRefGoogle Scholar
  27. 27.
    J.-Y. Bigot, L. Guidoni, E. Beaurepaire, and P. N. Saeta, Phys. Rev. Lett. 93, 077401 (2004).PubMedADSCrossRefGoogle Scholar
  28. 28.
    L. Guidoni, E. Beaurepaire, and J.-Y. Bigot, Phys. Rev. Lett. 89, 017401 (2002).PubMedADSCrossRefGoogle Scholar
  29. 29.
    G. Zhang and W. Hübner, Phys. Rev. Lett. 85, 3025 (2000).PubMedADSCrossRefGoogle Scholar
  30. 30.
    B. Koopmans, J. J. M. Ruigrok et al., Phys. Rev. Lett. 95, 267207 (2005).PubMedADSCrossRefGoogle Scholar
  31. 31.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).zbMATHGoogle Scholar
  32. 32.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    E. P. Wigner, Phys. Rev. 40, 749 (1932).zbMATHADSCrossRefGoogle Scholar
  35. 35.
    C. D. Sherrill and H. F. Schaefer, Adv. Quantum Chem. 34, 143 (1999).CrossRefGoogle Scholar
  36. 36.
    W. Kohn, Phys. Rev. 123, 1242 (1961).zbMATHADSCrossRefGoogle Scholar
  37. 37.
    T. Sako, P.-A. Hervieux, and G. H. F. Diercksen, Phys. Rev. B 74, 045329 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    T. Sako and G. H. F. Diercksen, J. Phys. B: At. Mol. Opt. Phys. 36, 1433 (2003).ADSCrossRefGoogle Scholar
  39. 39.
    T. Sako and G. H. F. Diercksen, J. Phys. B: At. Mol. Opt. Phys. 36, 1681 (2003).ADSCrossRefGoogle Scholar
  40. 40.
    E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).ADSCrossRefGoogle Scholar
  41. 41.
    M. E. Casida, Recent Developments and Applications of Modern Density Functional Theory, vol. 4, ed. J. M. Seminario (Elsevier, Amsterdam, 1996).Google Scholar
  42. 42.
    E. K. U. Gross, J. F. Dobson, and M. Petersilka, Topics in Current Chemistry (Springer, Berlin, 1996), pp. 81–172.Google Scholar
  43. 43.
    S. Lundqvist and N. H. March, Theory of the Inhomogeneous Electron Gas (Plenum Press, New York, 1983).Google Scholar
  44. 44.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).ADSCrossRefGoogle Scholar
  45. 45.
    J. F. Dobson, Phys. Rev. Lett. 73, 2244 (1994).PubMedADSCrossRefGoogle Scholar
  46. 46.
    E. K. U. Gross and W. Kohn, Adv. Quantum Chem. 21, 255 (1990).CrossRefGoogle Scholar
  47. 47.
    G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996).PubMedADSCrossRefGoogle Scholar
  48. 48.
    R. D’Agosta and G. Vignale, Phys. Rev. Lett. 96, 016405 (2006).PubMedADSCrossRefGoogle Scholar
  49. 49.
    G. Vignale and W. Kohn, Electronic Density Functional Theory, ed. J. Dobson, M. P. Das, and G. Vignale (Plenum Press, New York, 1997).Google Scholar
  50. 50.
    G. Vignale and M. Rasolt, Phys. Rev. Lett. 59, 2360 (1987).PubMedADSCrossRefGoogle Scholar
  51. 51.
    F. Calvayrac, P.-G. Reinhard, E. Suraud, and C. Ullrich, Phys. Rep. 337, 493 (2000).ADSCrossRefGoogle Scholar
  52. 52.
    B. Gervais, E. Giglio, A. Ipatov, J. Douady, Comput. Mater. Sci. 35, 359 (2006).CrossRefGoogle Scholar
  53. 53.
    L. F. Ruiz, P.-A. Hervieux, J. Hanssen, M. F. Politis, and F. Martin, Int. J. Quantum Chem. 86, 106 (2002).CrossRefGoogle Scholar
  54. 54.
    D. Bauer, F. Ceccherini, A. Macchi, and F. Cornolti, Phys. Rev. A 64, 063203 (2001).ADSCrossRefGoogle Scholar
  55. 55.
    E. Cormier, P.-A. Hervieux, R. Wiehle, B. Witzel, and H. Helm, Eur. Phys. J. D 26, 83 (2003).ADSCrossRefGoogle Scholar
  56. 56.
    A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).ADSCrossRefGoogle Scholar
  57. 57.
    Z. Levine and P. Soven, Phys. Rev. Lett. 50, 2074 (1983).ADSCrossRefGoogle Scholar
  58. 58.
    W. Eckardt, Phys. Rev. B 31, 6360 (1985).ADSCrossRefGoogle Scholar
  59. 59.
    J. Lermé et al., Eur. Phys. J. D 4, 95 (1998).ADSCrossRefGoogle Scholar
  60. 60.
    A. G. Eguiluz, Phys. Rev. Lett. 51, 1907 (1983).ADSCrossRefGoogle Scholar
  61. 61.
    E. Lipparini and Ll. Serra, Phys. Rev. B 57, R6830 (1998).ADSCrossRefGoogle Scholar
  62. 62.
    N. D. Mermin, Phys. Rev. 137, A1441 (1965).MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    U. Gupta and A. K. Rajagopal, Phys. Rep. 87, 259 (1982).ADSCrossRefGoogle Scholar
  65. 65.
    W. Yang, Phys. Rev. A 38, 5504 (1988).PubMedADSCrossRefGoogle Scholar
  66. 66.
    L. D. Landau and E. M. Lifchitz, Statistical Physics (Pergamon Press, Oxford, 1969).Google Scholar
  67. 67.
    P.-A. Hervieux, A. Benabbas, V. Halté, and J.-Y. Bigot, Eur. Phys. J. D 24, 185 (2003).ADSCrossRefGoogle Scholar
  68. 68.
    P.-A. Hervieux and J.-Y. Bigot, Phys. Rev. Lett. 92, 197402 (2004).PubMedADSCrossRefGoogle Scholar
  69. 69.
    M. Petersilka et al., Phys. Rev. Lett. 76, 1212 (1996).PubMedADSCrossRefGoogle Scholar
  70. 70.
    W. Yang, Phys. Rev. A 38, 5512 (1988).PubMedADSCrossRefGoogle Scholar
  71. 71.
    G. D. Mahan and K. R. Subbaswamy, Local Density Theory of Polarizability (Plenum Press, New York, 1990).Google Scholar
  72. 72.
    J. G. Fujimoto et al., Phys. Rev. Lett. 53, 1837 (1984).ADSCrossRefGoogle Scholar
  73. 73.
    L. Jiang and H.-L. Tsai, J. Heat Transfer 127, 1167 (2005).CrossRefGoogle Scholar
  74. 74.
    F. Vallée, J. Phys. Chem. B 105, 2264 (2001).CrossRefGoogle Scholar
  75. 75.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, Orlando, 1976).Google Scholar
  76. 76.
    T. N. Truong et al., J. Chem. Phys. 96, 2077 (1992).ADSCrossRefGoogle Scholar
  77. 77.
    J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).zbMATHMathSciNetCrossRefGoogle Scholar
  78. 78.
    V. I. Tatarskii, Sov. Phys. Usp. 26, 311 (1983).MathSciNetADSCrossRefGoogle Scholar
  79. 79.
    V. I. Tatarskii, Usp. Fis. Nauk. 139, 587 (1983).MathSciNetGoogle Scholar
  80. 80.
    M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984).MathSciNetADSCrossRefGoogle Scholar
  81. 81.
    G. Manfredi and M. R. Feix, Phys. Rev. E 53, 6460 (1996).ADSCrossRefGoogle Scholar
  82. 82.
    N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, and C. Ringhofer, Phys. Rev. B 39, 7720 (1989).ADSCrossRefGoogle Scholar
  83. 83.
    P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor Equations (Springer, Vienna, 1990).zbMATHGoogle Scholar
  84. 84.
    J. E. Drummond, Plasma Physics (McGraw- Hill, New York, 1961).Google Scholar
  85. 85.
    J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28, 1 (1954).Google Scholar
  86. 86.
    X. Liu, R. Stock, and W. Rudolph, Phys. Rev. B 72, 195431 (2005).ADSCrossRefGoogle Scholar
  87. 87.
    M. Anderegg, Phys. Rev. Lett. 27, 1575 (1971).ADSCrossRefGoogle Scholar
  88. 88.
    R. Jasiak, G. Manfredi, and P.-A. Hervieux, New J. Phys. 11, 063042 (2009).ADSCrossRefGoogle Scholar
  89. 89.
    W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, Phys. Rev. B 46, 13592 (1992).ADSCrossRefGoogle Scholar
  90. 90.
    E. A. Uehling et al., Phys. Rev. 43, 552 (1933).zbMATHADSCrossRefGoogle Scholar
  91. 91.
    A. Domps, P.-G. Reinhard, and E. Suraud Phys. Rev. Lett. 81, 5524 (1998).ADSCrossRefGoogle Scholar
  92. 92.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976).zbMATHMathSciNetADSCrossRefGoogle Scholar
  93. 93.
    D. Pines and P. Nozières, The Theory of Quantum Liquids (W. A. Benjamin, New York, 1966).Google Scholar
  94. 94.
    W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).MathSciNetADSCrossRefGoogle Scholar
  95. 95.
    A. Isar, A. Sandulescu, H. Scutaru, E. Stefanescu, and W. Scheid, Int. J. Mod. Phys. E 3, 635 (1994).MathSciNetADSCrossRefGoogle Scholar
  96. 96.
    G. Manfredi and F. Haas, Phys. Rev. B 64, 075316 (2001).ADSCrossRefGoogle Scholar
  97. 97.
    N. Crouseilles, P.-A. Hervieux, and G. Manfredi, Phys. Rev. B 78, 155412 (2008).ADSCrossRefGoogle Scholar
  98. 98.
    A. K. Rajagopal, Phys. Rev. B 17, 2980 (1978).MathSciNetADSCrossRefGoogle Scholar
  99. 99.
    M. I. Katsnelson and A. I. Lichtenstein, J. Phys.: Condens. Matter 16, 7439 (2004).ADSCrossRefGoogle Scholar
  100. 100.
    E. Maurat and P.-A. Hervieux, New Journal of Physics 11, 103031 (2009).CrossRefGoogle Scholar
  101. 101.
    H. O. Wijewardane and C. A. Ullrich, Appl. Phys. Lett. 84, 3984 (2004).ADSCrossRefGoogle Scholar
  102. 102.
    G. Manfredi and P.-A. Hervieux, Appl. Phys. Lett. 91, 061108 (2007).ADSCrossRefGoogle Scholar
  103. 103.
    N. Suh, M. R. Feix, and P. Bertrand, J. Comput. Phys. 94, 403 (1991).zbMATHADSCrossRefGoogle Scholar
  104. 104.
    L. D. Landau and E. M. Lifschitz, Quantum Electrodynamics (Pergamon Press, Oxford, 1983).Google Scholar
  105. 105.
    P. Strange, Relativistic Quantum Mechanics (Cambridge University Press, Cambridge, 1998).Google Scholar
  106. 106.
    L. Besombes et al., Phys. Rev. Lett 93, 207403 (2004).PubMedADSCrossRefGoogle Scholar
  107. 107.
    Y. Leger et al., Phys. Rev. Lett. 97, 107401 (2006).PubMedADSCrossRefGoogle Scholar
  108. 108.
    J. Wang et al., Phys. Rev. Lett. 98, 217401 (2007).PubMedADSCrossRefGoogle Scholar
  109. 109.
    T. Dietl et al., cience 287, 1019 (2000).ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institut de Physique et Chimie des Matériaux de StrasbourgStrasbourgFrance
  2. 2.Institut de Recherche en Mathématiques Avancées UdSStrasbourgFrance

Personalised recommendations