Skip to main content

Nash Equilibria and the Price of Anarchy for Flows over Time

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5814))

Abstract

We study Nash equilibria in the context of flows over time. Many results on static routing games have been obtained over the last ten years. In flows over time (also called dynamic flows), flow travels through a network over time and, as a consequence, flow values on edges are time-dependent. This more realistic setting has not been tackled from the viewpoint of algorithmic game theory yet; but there is a rich literature on game theoretic aspects of flows over time in the traffic community.

We present a novel characterization of Nash equilibria for flows over time. It turns out that Nash flows over time can be seen as a concatenation of special static flows. The underlying flow over time model is the so-called deterministic queuing model that is very popular in road traffic simulation and related fields. Based upon this, we prove the first known results on the price of anarchy for flows over time.

This work is supported by DFG Research Center Matheon “Mathematics for key technologies” in Berlin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamatsu, T.: A dynamic traffic equilibrium assignment paradox. Transportation Research Part B: Methodological 34(6), 515–531 (2000)

    Article  Google Scholar 

  2. Akamatsu, T.: An efficient algorithm for dynamic traffic equilibrium assignment with queues. Transportation Science 35(4), 389–404 (2001)

    Article  MATH  Google Scholar 

  3. Akamatsu, T., Heydecker, B.: Detecting dynamic traffic assignment capacity paradoxes in saturated networks. Transportation Science 37(2), 123–138 (2003)

    Article  Google Scholar 

  4. Anshelevich, E., Ukkusuri, S.: Equilibria in dynamic selfish routing. In: Mavronicolas, M. (ed.) Proceedings of the 2nd International Symposium on Algorithmic Game Theory. LNCS. Springer, Heidelberg (2009)

    Google Scholar 

  5. Aronson, J.E.: A survey of dynamic network flows. Annals of Operations Research 20(1–4), 1–66 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K.: MATSim-T: Architecture and simulation times. In: Bazzan, A., Klügl, F. (eds.) Multi-Agent Systems for Traffic and Transportation Engineering, ch. III. Information Science Reference (2009)

    Google Scholar 

  7. Ben-Akiva, M.J., Bierlaire, M., Koutsopoulos, H.N., Mishalani, R.: DynaMIT: a simulation-based system for traffic prediction and guidance generation. In: Proceedings of the 3rd Triennial Symposium on Transportation Systems (1998)

    Google Scholar 

  8. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12 12, 258–268 (1968) (in German)

    Article  MATH  MathSciNet  Google Scholar 

  9. Carey, M.: Link travel times I: Properties derived from traffic-flow models. Networks and Spatial Economics 4(3), 257–268 (2004)

    Article  MATH  Google Scholar 

  10. Carey, M.: Link travel times II: Properties derived from traffic-flow models. Networks and Spatial Economics 4(4), 379–402 (2004)

    Article  MATH  Google Scholar 

  11. Chen, H.-K.: Dynamic Travel Choice Models: A Variational Inequality Approach. Springer, Berlin (1999)

    Google Scholar 

  12. Chen, H.K., Hsueh, C.F.: A model and an algorithm for the dynamic user-optimal route choice problem. Transportation Research Part B: Methodological 32(3), 219–234 (1998)

    Article  Google Scholar 

  13. de Palma, A., Ben-Akiva, M., Lefèvre, C., Litinas, N.: Stochastic equilibrium model of peak period traffic congestion. Transportation Science 17(4), 430–453 (1983)

    Article  Google Scholar 

  14. Fleischer, L.K., Tardos, É.: Efficient continuous-time dynamic network flow algorithms. Operations Research Letters 23(3-5), 71–80 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations Research 6(3), 419–433 (1958)

    Article  MathSciNet  Google Scholar 

  16. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  17. Friesz, T.L., Bernstein, D., Smith, T.E., Tobin, R.L., Wie, B.W.: A variational inequality formulation of the dynamic network user equilibrium problem. Operations Research 41(1), 179–191 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Friesz, T.L., Luque, J., Tobin, R.L., Wie, B.W.: Dynamic network traffic assignment considered as a continuous time optimal control problem. Operations Research 37(6), 893–901 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hamacher, H.W., Tjandra, S.A.: Mathematical modelling of evacuation problems: A state of the art. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 227–266. Springer, Berlin (2002)

    Google Scholar 

  20. Han, S., Heydecker, B.G.: Consistent objectives and solution of dynamic user equilibrium models. Transportation Research Part B: Methodological 40(1), 16–34 (2006)

    Article  Google Scholar 

  21. Hendrickson, C., Kocur, G.: Schedule delay and departure time decisions in a deterministic model. Transportation Science 15(1), 62–77 (1981)

    Article  Google Scholar 

  22. Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Technical Report 014-2009, TU Berlin (2009), http://www.math.tu-berlin.de/coga/publications/techreports/2009/Report-%014-2009.xhtml

  23. Lin, W.H., Lo, H.K.: Are the objective and solutions of dynamic user-equilibrium models always consistent? Transportation Research Part A: Policy and Practice 34(2), 137–144 (2000)

    Article  Google Scholar 

  24. Mahmassani, H., Herman, R.: Dynamic user equilibrium departure time and route choice on idealized traffic arterials. Transportation Science 18(4), 362–384 (1984)

    Article  Google Scholar 

  25. Mahmassani, H.S., Peeta, S.: System optimal dynamic assignment for electronic route guidance in a congested traffic network. In: Gartner, N.H., Improta, G. (eds.) Urban Traffic Networks. Dynamic Flow Modelling and Control, pp. 3–37. Springer, Berlin (1995)

    Google Scholar 

  26. Mahmassani, H.S., Sbayti, H.A., Zhou, X.: DYNASMART-P Version 1.0 Users Guide. Maryland Transportation Initiative, College Park, Maryland (2004)

    Google Scholar 

  27. Mounce, R.: Convergence in a continuous dynamic queueing model for traffic networks. Transportation Research Part B: Methodological 40(9), 779–791 (2006)

    Article  Google Scholar 

  28. Mounce, R.: Convergence to equilibrium in dynamic traffic networks when route cost is decay monotone. Transportation Science 41(3), 409–414 (2007)

    Article  Google Scholar 

  29. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  30. Peeta, S., Ziliaskopoulos, A.K.: Foundations of dynamic traffic assignment: The past, the present and the future. Networks and Spatial Economics 1(3–4), 233–265 (2001)

    Article  Google Scholar 

  31. Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing. Handbooks in Operations Research and Management Science, ch. 3, vol. 8, pp. 141–295. North-Holland, Amsterdam (1995)

    Chapter  Google Scholar 

  32. Ran, B., Boyce, D.E.: Modelling Dynamic Transportation Networks. Springer, Berlin (1996)

    Google Scholar 

  33. Ran, B., Boyce, D.E., Leblanc, L.J.: A new class of instantaneous dynamic user-optimal traffic assignment models. Operations Research 41(1), 192–202 (1993)

    Article  MATH  Google Scholar 

  34. Ran, B., Hall, R.W., Boyce, D.E.: A link-based variational inequality model for dynamic departure time/route choice. Transportation Research Part B: Methodological 30(1), 31–46 (1996)

    Article  Google Scholar 

  35. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)

    Google Scholar 

  36. Roughgarden, T., Tardos, É.: How bad is selfish routing? In: Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, Redondo Beach, CA, pp. 93–102 (2000)

    Google Scholar 

  37. Skutella, M.: An introduction to network flows over time. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, ch. 21, pp. 451–482. Springer, Berlin (2009)

    Chapter  Google Scholar 

  38. Smith, M.J.: The existence of a time-dependent equilibrium distribution of arrivals at a single bottleneck. Transportation Science 18(4), 385–394 (1984)

    Article  MathSciNet  Google Scholar 

  39. Smith, M.J.: A new dynamic traffic model and the existence and calculation of dynamic user equilibria on congested capacity-constrained road networks. Transportation Research Part B: Methodological 27(1), 49–63 (1993)

    Article  Google Scholar 

  40. Szeto, W.Y., Lo, H.K.: A cell-based simultaneous route and departure time choice model with elastic demand. Transportation Research Part B: Methodological 38(7), 593–612 (2004)

    Article  Google Scholar 

  41. Taylor, N.B.: The CONTRAM dynamic traffic assignment model. Networks and Spatial Economics 3(3), 297–322 (2003)

    Article  Google Scholar 

  42. Vickrey, W.S.: Congestion theory and transport investment. The American Economic Review 59(2), 251–260 (1969)

    Google Scholar 

  43. Wu, J.H., Chen, Y., Florian, M.: The continuous dynamic network loading problem: a mathematical formulation and solution method. Transportation Research Part B: Methodological 32(3), 173–187 (1998)

    Article  Google Scholar 

  44. Xu, Y.W., Wu, J.H., Florian, M., Marcotte, P., Zhu, D.L.: Advances in the continuous dynamic network loading problem. Transportation Science 33(4), 341–353 (1999)

    Article  MATH  Google Scholar 

  45. Yagar, S.: Dynamic traffic assignment by individual path minimization and queuing. Transportation Research 5(3), 179–196 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koch, R., Skutella, M. (2009). Nash Equilibria and the Price of Anarchy for Flows over Time. In: Mavronicolas, M., Papadopoulou, V.G. (eds) Algorithmic Game Theory. SAGT 2009. Lecture Notes in Computer Science, vol 5814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04645-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04645-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04644-5

  • Online ISBN: 978-3-642-04645-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics