Skip to main content

Modalities, Relations, and Learning

A Relational Interpretation of Learning Approaches

  • Conference paper
Relations and Kleene Algebra in Computer Science (RelMiCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5827))

Included in the following conference series:

Abstract

While the popularity of statistical, probabilistic and exhaustive machine learning techniques still increases, relational and logic approaches are still a niche market in research. While the former approaches focus on predictive accuracy, the latter ones prove to be indispensable in knowledge discovery.

In this paper we present a relational description of machine learning problems. We demonstrate how common ensemble learning methods as used in classifier learning can be reformulated in a relational setting. It is shown that multimodal logics and relational data analysis with rough sets are closely related. Finally, we give an interpretation of logic programs as approximations of hypotheses.

It is demonstrated that at a certain level of abstraction all these methods unify into one and the same formalisation which nicely connects to multimodal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Orlowska, E.: Reasoning with incomplete information: Rough set based information logics. In: Proceedings of the SOFTEKS Workshop on Incompleteness and Uncertainty in Information Systems, pp. 16–33 (1993)

    Google Scholar 

  2. Yao, Y.Y.: On generalizing rough set theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, p. 579. Springer, Heidelberg (2003)

    Google Scholar 

  3. Düntsch, I.: A logic for rough sets. Theoretical Computer Science 179, 427–436 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Xu, F., Yao, Y., Miao, D.: Rough set approximations in formal concept analysis and knowledge spaces. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 319–328. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Düntsch, I., Gediga, G., Orłowska, E.: Relational attribute systems II: Reasoning with relations in information structures. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 16–35. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Wolpert, M.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1, 67–82 (1997)

    Article  Google Scholar 

  7. Breiman, L.: Bagging predictors. Technical Report 421, University of California, Berkeley (1994)

    Google Scholar 

  8. Breiman, L.: Heuristics of instability and stabilization in model selection. The Annals of Statistics 24 (1996)

    Google Scholar 

  9. Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

  10. Schapire, R.E.: The boosting approach to machine learning: An overview. In: MSRI Workshop on Nonlinear Estimation and Classification (2002)

    Google Scholar 

  11. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. 19th Intl. Conf. Machine Learning (1996)

    Google Scholar 

  12. Pawlak, Z.: On rough sets. Bulletin of the EATCS 24, 94–184 (1984)

    Google Scholar 

  13. Han, X., Lin, T.Y., Han, J.: A new rough sets model based on database systems. Fundamenta Informaticae 59, 135–152 (2003)

    MathSciNet  Google Scholar 

  14. Wróblewski, J.: Finding minimal reducts using genetic algorithms. In: Proc. of the Second Annual Joint Conference on Information Sciences (1995)

    Google Scholar 

  15. Øhrn, A.: Discernibility and Rough Sets in Medicine: Tools and Applications. PhD thesis, Norwegian University of Science and Technology, Department of Computer and Information Science (1999)

    Google Scholar 

  16. Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis-Horwood (1994)

    Google Scholar 

  17. Raedt, L.D.: Logical and Relational Learning. In: Cognitive Technologies. Springer, Heidelberg (2008)

    Google Scholar 

  18. Robinson, J.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41 (1965)

    Article  MATH  Google Scholar 

  19. Warren, D.H.D.: An abstract prolog instruction set. Technical Note 309, SRI International, Menlo Park, CA (1983)

    Google Scholar 

  20. Muggleton, S., Buntine, W.: Machine invention of first-order predicates by inverting resolution. In: Proceedings of the 5th International Conference on Machine Learning, pp. 339–352. Kaufmann, San Francisco (1988)

    Google Scholar 

  21. Plotkin, G.: A further note on inductive generalization. In: Machine Intelligence, vol. 6. Edinburgh University Press, Edinburgh (1971)

    Google Scholar 

  22. Plotkin, G.: A note on inductive generalisation. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 153–163. Edinburgh University Press, Edinburgh (1969)

    Google Scholar 

  23. Shapiro, E.: Inductive inference of theories from facts. In: Lassez, J.L., Plotkin, G. (eds.) Computational logic: essays in honor of Alan Robinson. The MIT Press, Cambridge (1991)

    Google Scholar 

  24. Džeroski, S., Muggleton, S., Russell, S.: PAC-learnability of determinate logic programs. In: Proceedings of the 5th ACM Workshop on Computational Learning Theory, pp. 128–135. ACM Press, New York (1992)

    Chapter  Google Scholar 

  25. Kautz, H., Kearns, M., Selman, B.: Horn approximations of empirical data. Artificial Intelligence 74 (1995)

    Google Scholar 

  26. Nock, R., Jappy, P.: Function-free Horn clauses are hard to approximate. In: Page, D. (ed.) ILP 1998. LNCS (LNAI), vol. 1446. Springer, Heidelberg (1998)

    Google Scholar 

  27. Quinlan, J.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  28. Quinlan, J., Cameron, R.: Induction of logic programs: FOIL and related systems. New Generation Computing 13, 287–312 (1995)

    Article  Google Scholar 

  29. Muggleton, S.H.: Inverse entailment and Progol. New Generation Computing 13, 245–286 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller, M.E. (2009). Modalities, Relations, and Learning. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds) Relations and Kleene Algebra in Computer Science. RelMiCS 2009. Lecture Notes in Computer Science, vol 5827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04639-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04639-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04638-4

  • Online ISBN: 978-3-642-04639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics