P300 Detection Based on Feature Extraction in On-line Brain-Computer Interface

  • Nikolay Chumerin
  • Nikolay V. Manyakov
  • Adrien Combaz
  • Johan A. K. Suykens
  • Refet Firat Yazicioglu
  • Tom Torfs
  • Patrick Merken
  • Herc P. Neves
  • Chris Van Hoof
  • Marc M. Van Hulle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5803)

Abstract

We propose a new EEG-based wireless brain computer interface (BCI) with which subjects can “mind-type” text on a computer screen. The application is based on detecting P300 event-related potentials in EEG signals recorded on the scalp of the subject. The BCI uses a simple classifier which relies on a linear feature extraction approach. The accuracy of the presented system is comparable to the state-of-the-art for on-line P300 detection, but with the additional benefit that its much simpler design supports a power-efficient on-chip implementation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Editorial Comment: Is this the bionic man? Nature 442(7099), 109 (July 2006)Google Scholar
  2. 2.
    Pesaran, B., Musallam, S., Andersen, R.: Cognitive neural prosthetics. Current Biology 16(3), 77–80 (2006)CrossRefGoogle Scholar
  3. 3.
    Vidal, J.: Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering 2(1), 157–180 (1973)CrossRefGoogle Scholar
  4. 4.
    Birbaumer, N., Kubler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., Iversen, I., Kotchoubey, B., Neumann, N., Flor, H.: The thought translation device (TTD) for completely paralyzedpatients. IEEE Transactions on Rehabilitation Engineering 8(2), 190–193 (2000)CrossRefGoogle Scholar
  5. 5.
    Luck, S.: An introduction to the event-related potential technique. MIT Press, Cambridge (2005)Google Scholar
  6. 6.
    Pritchard, W.: Psychophysiology of P300. Psychological Bulletin 89(3), 506 (1981)CrossRefGoogle Scholar
  7. 7.
    Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., Ritter, H.: BCI Competition 2003 - Data set IIb: support vector machines for the P300 speller paradigme. IEEE Transactions on Biomedical Engineering 51(6), 1073–1076 (2004)CrossRefGoogle Scholar
  8. 8.
    Serby, H., Yom-Tov, E., Inbar, G.: An improved P300-based brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(1), 89–98 (2005)CrossRefGoogle Scholar
  9. 9.
    Xu, N., Gao, X., Hong, B., Miao, X., Gao, S., Yang, F.: BCI Competition 2003 - Data set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications. IEEE Transactions on Biomedical Engineering 51(2), 1067–1072 (2004)CrossRefGoogle Scholar
  10. 10.
    Thulasidas, M., Guan, C., Wu, J.: Robust classification of EEG signal for brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14(1), 24–29 (2006)CrossRefGoogle Scholar
  11. 11.
    Dornhege, G., Millán, J., Hinterberger, T., McFarland, D., Sejnowski, T., Muller, K.: Toward brain-computer interfacing. The MIT Press, Cambridge (2007)Google Scholar
  12. 12.
    Yazicioglu, R., Merken, P., Puers, R., Van Hoof, C.: Low-power low-noise 8-channel EEG front-end ASIC for ambulatory acquisition systems. In: Proceedings of the 32nd European Solid-State Circuits Conference. ESSCIRC 2006, pp. 247–250 (2006)Google Scholar
  13. 13.
    Farwell, L., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and clinical Neurophysiology 70(6), 510–523 (1988)CrossRefGoogle Scholar
  14. 14.
    Leiva-Murillo, J., Artes-Rodriguez, A.: Maximization of mutual information for supervised linear feature extraction. IEEE Transactions on Neural Networks 18(5), 1433–1441 (2007)CrossRefGoogle Scholar
  15. 15.
    Hyvärinen, A.: New approximations of differential entropy for independent component analysis and projection pursuit. In: Proceedings of the 1997 conference on Advances in neural information processing systems 10 table of contents, pp. 273–279. MIT Press, Cambridge (1998)Google Scholar
  16. 16.
    Torkkola, K., Campbell, W.: Mutual information in learning feature transformations. In: Proceedings of the 17th International Conference on Machine Learning (2000)Google Scholar
  17. 17.
    Chumerin, N., Van Hulle, M.: Comparison of Two Feature Extraction Methods Based on Maximization of Mutual Information. In: Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, pp. 343–348 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nikolay Chumerin
    • 1
  • Nikolay V. Manyakov
    • 1
  • Adrien Combaz
    • 1
  • Johan A. K. Suykens
    • 2
  • Refet Firat Yazicioglu
    • 3
  • Tom Torfs
    • 3
  • Patrick Merken
    • 3
  • Herc P. Neves
    • 3
  • Chris Van Hoof
    • 3
  • Marc M. Van Hulle
    • 3
  1. 1.Laboratorium voor Neuro- en PsychofysiologieK.U. LeuvenLeuvenBelgium
  2. 2.ESAT-SCDK.U. LeuvenHeverleeBelgium
  3. 3.IMECLeuvenBelgium

Personalised recommendations