Skip to main content

Parametric Uncertainty of Linear Discrete-Time Systems Described by Fuzzy Numbers

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5711))

Abstract

The paper deals with the problem of determination of stability margin of uncertain linear discrete-time systems with uncertainty described by fuzzy numbers. Nonsymmetric triangular membership functions describing the uncertainty of coefficients of characteristic polynomial are considered. The presented solution is based on transformation of the original problem to Hurwitz stability test and generalization of Tsypkin-Polyak plot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bondia, J., Picó, J.: Analysis of Systems with Variable Parametric Uncertainty Using Fuzzy Functions. In: Proc. of European Control Conference, ECC 1999 (1999)

    Google Scholar 

  2. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, Inc., London (1980)

    MATH  Google Scholar 

  3. Nguyen, H.T., Kreinovich, V.: How stable is a fuzzy linear system. In: Proc. 3rd IEEE Conf. on Fuzzy Systems, pp. 1023–1027 (1994)

    Google Scholar 

  4. Bondia, J., Picó, J.: Analysis of linear systems with fuzzy parametric uncertainty. Fuzzy Sets and Systems 135, 81–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Argoun, M.B.: Frequency domain conditions for the stability of perturbed polynomials. IEEE Trans. Automat. Control 10, 913–916 (1987)

    Article  MATH  Google Scholar 

  6. Lan, L.: Robust stability of fuzzy-parameter systems. Automation and Remote Control 66, 596–605 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hušek, P.: Generalized Tsypkin-Polyak locus. In: Proc. of 2nd IFAC Symposium on System, Structure and Control, SSSC 2004, pp. 78–83 (2004)

    Google Scholar 

  8. Tsypkin, Y.Z., Polyak, B.T.: Frequency domain criterion for robust stability of polytope of polynomials. In: Mansour, M., Balemi, S., Truol, W. (eds.) Control of Uncertain Dynamic Systems, pp. 113–124. Birkhauser, Basel (1992)

    Google Scholar 

  9. Mansour, M.: On robust stability of linear systems. Systems & Control Letters 22, 137–143 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cieslik, J.: On possibilities of the extension of Kharitonov’s stability test for interval polynomials to discrete-time case. IEEE Transactions on Automatic Control 32, 237–238 (1987)

    Article  MathSciNet  Google Scholar 

  11. Mansour, M., Kraus, F.J., Anderson, B.D.O.: Strong Kharitonov theorem for discrete systems. In: Milanese, M., Temp, R., Vicino, A. (eds.) Robustness in Identification and Control, vol. 22, pp. 113–124. Plenum Press, New York (1989)

    Google Scholar 

  12. Kraus, F.J., Anderson, B.D.O., Mansour, M.: Robust Schur polynomial stability and Kharitonov theorem. International Journal of Control 47, 1213–1225 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Greiner, R.: Necessary conditions for Schur-stability of interval polynomials. IEEE Transactions on Automatic Control 49, 740–744 (2004)

    Article  MathSciNet  Google Scholar 

  14. Bhattacharyya, S.P., Chapellat, H., Keel, L.: Robust Control: The Parametric Approach. Prentice-Hall, Inc., Upper Saddle River (1995)

    MATH  Google Scholar 

  15. Jury, E.: A modified stability table for linear discrete systems. Proc. IEEE 53, 184–185 (1965)

    Article  Google Scholar 

  16. Ogata, K.: Discrete-time control systems (2nd ed.), 2nd edn. Prentice-Hall, Inc., Upper Saddle River (1995)

    Google Scholar 

  17. Shiomi, K., Otsuka, N., Inaba, H., Ishii, R.: The property of bilinear transformation matrix and Schur stability for a linear combination of polynomials. Journal of Franklin Institute 336, 533–541 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jalili-Kharaajoo, M., Araabi, B.N.: The Schur stability via the Hurwitz stability analysis using a biquadratic transformation. Automatica 41, 173–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kiselev, O., Lan, L., Polyak, B.: Frequency responses under parametric uncertainties. Automation and Remote Control 58, 645–661 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hušek, P. (2009). Parametric Uncertainty of Linear Discrete-Time Systems Described by Fuzzy Numbers. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2009. Lecture Notes in Computer Science(), vol 5711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04595-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04595-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04594-3

  • Online ISBN: 978-3-642-04595-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics