Skip to main content

Bringing Quality of Context into Wearable Human Activity Recognition Systems

  • Conference paper
Quality of Context (QuaCon 2009)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5786))

Included in the following conference series:

Abstract

Quality of Context (QoC) in context-aware computing improves reasoning and decision making. Activity recognition in wearable computing enables context-aware assistance. Wearable systems must include QoC to participate in context processing frameworks common in large ambient intelligence environments. However, QoC is not specifically defined in that domain. QoC models allowing activity recognition system reconfiguration to achieve a desired context quality are also missing. Here we identify the recognized dimensions of QoC and the performance metrics in activity recognition systems. We discuss how the latter maps on the former and provide provide guidelines to include QoC in activity recognition systems. On the basis of gesture recognition in a car manufacturing case study, we illustrate the signification of QoC and we present modeling abstractions to reconfigure an activity recognition system to achieve a desired QoC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-Computer Interaction 16(2), 97–166 (2001)

    Article  Google Scholar 

  2. Stiefmeier, T., Roggen, D., Ogris, G., Lukowicz, P., Tröster, G.: Wearable activity tracking in car manufacturing. IEEE Pervasive Computing 7(2), 42–50 (2008)

    Article  Google Scholar 

  3. Tentori, M., Favela, J.: Activity-aware computing for healthcare. IEEE Pervasive Computing 7(2), 51–57 (2008)

    Article  Google Scholar 

  4. Consolvo, S., Roessler, P., Shelton, B., LaMarca, A., Schilit, B., Bly, S.: Technology for care networks of elders. IEEE Pervasive Computing 3(2), 22–29 (2004)

    Article  Google Scholar 

  5. Bardram, J.E.: Applications of context-aware computing in hospital work: examples and design principles. In: Proc. ACM Symposium on Applied Computing (SAC), pp. 1574–1579 (2004)

    Google Scholar 

  6. Fleck, M., Frid, M., Kindberg, T., O’Brien-Strain, E., Rajani, R., Spasojevic, M.: From informing to remembering: Ubiquitous systems in interactive museums. IEEE Pervasive Computing 1(2), 13–21 (2002)

    Article  Google Scholar 

  7. Schilit, B.N., Adams, N., Want, R.: Context-aware computing applications. In: Proc. IEEE Workshop on Mobile Computing Systems and Applications, pp. 85–90 (1994)

    Google Scholar 

  8. Böhm, S., Koolwaaij, J., Luther, M., Souville, B., Wagner, M., Wibbels, M.: Introducing IYOUIT. In: Proc. Int’l Semantic Web Conference, pp. 804–817 (2008)

    Google Scholar 

  9. Henricksen, K., Indulska, J.: Modelling and using imperfect context information. In: Proc. 2nd IEEE Conf. Pervasive Computing and Communications Workshops, pp. 33–37 (2004)

    Google Scholar 

  10. Buchholz, T., Kuepper, A., Schiffers, M.: Quality of context: What it is and why we need it. In: Proc. Workshop of the HP OpenView University Association, HPOVUA (2003)

    Google Scholar 

  11. SENSEI: http://www.sensei-project.eu/

  12. Berchtold, M., Decker, C., Riedel, T., Zimmer, T., Beigl, M.: Using a context quality measure for improving smart appliances. In: Proc. 27th Int’l Conf. Distributed Computing Systems Workshops (ICDCSW), p. 52 (2007)

    Google Scholar 

  13. Lei, H., Sow, D.M., John, S., Davis, I., Banavar, G., Ebling, M.R.: The design and applications of a context service. ACM SIGMOBILE Mobile Computing Communications Review 6(4), 45–55 (2002)

    Article  Google Scholar 

  14. Judd, G., Steenkiste, P.: Providing contextual information to pervasive computing applications. In: Proc. 1st IEEE Int’l Conf. on Pervasive Computing and Communications (PERCOM), p. 133 (2003)

    Google Scholar 

  15. Gu, T., Wang, X., Pung, H., Zhang, D.: An ontology-based context model in intelligent environments. In: Proceedings of Communication Networks and Distributed Systems Modeling and Simulation Conference, CNDS 2004 (2004)

    Google Scholar 

  16. Zimmer, T.: Qoc: Quality of context - improving the performance of context-aware applications. In: Advances in Pervasive Computing. Adj. Proc. Pervasive., vol. 207, pp. 209–214 (2006)

    Google Scholar 

  17. Sheikh, K., Wegdam, M., van Sinderen, M.: Middleware support for quality of context in pervasive context-aware systems. In: Proc. 5th IEEE Int’l Conf. on Pervasive Computing and Communications Workshops (PERCOMW), pp. 461–466 (2007)

    Google Scholar 

  18. Manzoor, A., Truong, H.L., Dustdar, S.: On the evaluation of quality of context. In: Roggen, D., Lombriser, C., Tröster, G., Kortuem, G., Havinga, P. (eds.) EuroSSC 2008. LNCS, vol. 5279, pp. 140–153. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Bu, Y., Gu, T., Tao, X., Li, J., Chen, S., Lu, J.: Managing quality of context in pervasive computing. In: Proc. 6th Int’l Conf. on Quality Software (QSIC), pp. 193–200 (2006)

    Google Scholar 

  20. Krause, M., Hochstatter, I.: Challenges in modelling and using quality of context (qoc). In: Magedanz, T., Karmouch, A., Pierre, S., Venieris, I.S. (eds.) MATA 2005. LNCS, vol. 3744, pp. 324–333. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Kim, Y., Lee, K.: A quality measurement method of context information in ubiquitous environments. In: Proc. Int’l Conf. on Hybrid Information Technology (ICHIT), vol. 2, pp. 576–581 (2006)

    Google Scholar 

  22. Strang, T., Linnhoff-Popien, C., Frank, K.: Cool: A context ontology language to enable contextual interoperability. In: Proc. 4th IFIP WG6.1 Int’l Conf. on Distributed Applications and Interoperable Systems (DAIS), pp. 236–247 (2003)

    Google Scholar 

  23. Heinz, E., Kunze, K., Gruber, M., Bannach, D., Lukowicz, P.: Using wearable sensors for real-time recognition tasks in games of martial arts – an initial experiment. Proc. IEEE Symposium on Computational Intelligence and Games, CIG (2006)

    Google Scholar 

  24. Kallio, S., Kela, J., Korpipää, P., Mäntyjärvi, J.: User independent gesture interaction for small handheld devices. Int’l J. of Pattern Recognition and Artificial Intelligence 20(4), 505–524 (2006)

    Article  Google Scholar 

  25. Bächlin, M., Roggen, D., Plotnik, M., Hausdorff, J.M., Tröster, G.: Online detection of freezing of gait in parkinson’s disease patients: A performance characterization. In: Accepted for Proc. 4th Int’l Conf. on Body Area Networks (2009)

    Google Scholar 

  26. Stäger, M., Lukowicz, P., Tröster, G.: Power and accuracy trade-offs in sound-based context recognition systems. Pervasive and Mobile Computing 3, 300–327 (2007)

    Article  Google Scholar 

  27. Bharatula, N., Lukowicz, P., Tröster, G.: Functionality-power-packaging considerations in context aware wearable systems. Personal and Ubiquitous Computing 12(2), 123–141 (2008)

    Article  Google Scholar 

  28. Van Laerhoven, K., Gellersen, H.W.: Spine versus porcupine: a study in distributed wearable activity recognition. In: Proc. 8th Int’l Symposium on Wearable Computers (ISWC), pp. 142–149 (2004)

    Google Scholar 

  29. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  30. Ward, J., Lukowicz, P., Tröster, G., Starner, T.: Activity recognition of assembly tasks using body-worn microphones and accelerometers. IEEE Trans. Pattern Analysis and Machine Intelligence 28(10), 1553–1567 (2006)

    Article  Google Scholar 

  31. Reilly, D., Siewiorek, D., Smailagic, A.: Power consumption and performance analysis of real-time speech translator smart module. In: Proc. 4th Int’l Symposium on Wearable Computers (ISWC), pp. 25–32 (2000)

    Google Scholar 

  32. Zappi, P., Lombriser, C., Farella, E., Roggen, D., Benini, L., Tröster, G.: Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selection. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 17–33. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits and Systems Magazine 6(3), 21–45 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villalonga, C., Roggen, D., Lombriser, C., Zappi, P., Tröster, G. (2009). Bringing Quality of Context into Wearable Human Activity Recognition Systems. In: Rothermel, K., Fritsch, D., Blochinger, W., Dürr, F. (eds) Quality of Context. QuaCon 2009. Lecture Notes in Computer Science, vol 5786. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04559-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04559-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04558-5

  • Online ISBN: 978-3-642-04559-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics