Exponentialzeit-Algorithmen für TSP und DNP

  • Frank Gurski
  • Irene Rothe
  • Jörg Rothe
  • Egon Wanke
Chapter
Part of the eXamen.press book series (EXAMEN)

Zusammenfassung

Im vorigen Kapitel haben wir eine Technik kennen gelernt, mit der sich die naiven Exponentialzeit-Algorithmen für eine Vielzahl von Problemen deutlich verbessern lassen, nämlich alle die Probleme, die sich für positive natürliche Zahlen a und b als (a, b)-CSP darstellen lassen. Dies gelingt für ganz unterschiedliche Probleme, etwa das Erfüllbarkeitsproblem der Aussagenlogik und Färbbarkeitsprobleme auf Graphen, aber nicht für alle Probleme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [Woe03]
    G. Woeginger. Exact algorithms for NP-hard problems. In M.Jünger, G. Reinelt, and G. Rinaldi, editors, Combinatorical Optimization: “Eureka, you shrink!”, pages 185–207. Springer-Verlag Lecture Notes in Computer Science #2570, 2003.Google Scholar
  2. [FGPS08]
    F. Fomin, F. Grandoni, A. Pyatkin, and A. Stepanov. Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications. ACM Transactions on Algorithms, 5(1), 2008.Google Scholar
  3. [HK62]
    M. Held and R. Karp. A dynamic programming approach to sequencing problems. SIAM Journal, 10:196–210, 1962.MATHMathSciNetGoogle Scholar
  4. [Sch05]
    U. Schöning. Algorithmics in exponential time. In Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science, pages 36–43. Springer-Verlag Lecture Notes in Computer Science #3404, February 2005.Google Scholar
  5. [GJ79]
    M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.Google Scholar
  6. [FGPS05]
    F. Fomin, F. Grandoni, A. Pyatkin, and A. Stepanov. Bounding the number of minimal dominating sets: A measure and conquer approach. In Proceedings of the 16th International Symposium on Algorithms and Computation, pages 573–582, December 2005.Google Scholar
  7. [RRSY07]
    T. Riege, J. Rothe, H. Spakowski, and M. Yamamoto. An improved exact algorithm for the domatic number problem. Information Processing Letters, 101(3):101–106, 2007.MATHCrossRefMathSciNetGoogle Scholar
  8. [Sch02]
    U. Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart. Algorithmica, 32(4):615–623, 2002.MATHCrossRefMathSciNetGoogle Scholar
  9. [FGK05]
    F. Fomin, F. Grandoni, and D. Kratsch. Measure and conquer: Domination – A case study. In Proceedings of the 32nd International Colloquium on Automata, Languages, and Programming, pages 191–203, July 2005.Google Scholar
  10. [BH06]
    A. Björklund and T. Husfeldt. Inclusion-exclusion algorithms for counting set partitions. In Proceedings of the 47th IEEE Symposium on Foundations of Computer Science, pages 575–582. IEEE Computer Society Press, October 2006.Google Scholar
  11. [RR05]
    T. Riege and J. Rothe. An exact \(2.9416^n\) algorithm for the three domatic number problem. In Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science, pages 733–744. Springer-Verlag Lecture Notes in Computer Science #3618, August 2005.Google Scholar
  12. [Yam05]
    M. Yamamoto. An improved \(\tilde{{\mathcal{O}}}(1.234^m)\)-time deterministic algorithm for SAT. In Proceedings of the 16th International Symposium on Algorithms and Computation, pages 644–653. Springer-Verlag Lecture Notes in Computer Science #3827, December 2005.Google Scholar
  13. [Sch99]
    U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In Proceedings of the 40th IEEE Symposium on Foundations of Computer Science, pages 410–414. IEEE Computer Society Press, October 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frank Gurski
    • 1
  • Irene Rothe
    • 2
  • Jörg Rothe
    • 1
  • Egon Wanke
    • 1
  1. 1.Institut für InformatikHeinrich-Heine-Universität DüsseldorfDüsseldorfDeutschland
  2. 2.Fachbereich für Maschinenbau Elektrotechnik und TechnikjournalismusHochschule Bonn-Rhein-SiegSankt AugustinDeutschland

Personalised recommendations