Advertisement

Cliquenweitebeschränkte Graphen

  • Frank Gurski
  • Irene Rothe
  • Jörg Rothe
  • Egon Wanke
Chapter
Part of the eXamen.press book series (EXAMEN)

Zusammenfassung

In diesem Kapitel werden wir einen zweiten Ansatz zur Lösung schwieriger Graphenprobleme auf speziellen Baumstrukturen kennen lernen. Im Gegensatz zum Ansatz über die Baumweite wird es im folgenden Ansatz auch möglich sein, im Sinne der Fest-Parameter-Algorithmik solche Instanzen effizient zu lösen, die beliebig dichte Graphen (z. B. vollständige Graphen oder vollständig bipartite Graphen) enthalten. Dazu werden wir den Graphparameter Cliquenweite und seinen algorithmischen Nutzen vorstellen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [GR00]
    M. Golumbic and U. Rotics. On the clique-width of some perfect graph classes. International Journal of Foundations of Computer Science, 11(3):423–443, 2000.CrossRefMathSciNetGoogle Scholar
  2. [EGW03]
    W. Espelage, F. Gurski, and E. Wanke. Deciding clique-width for graphs of bounded tree-width. Journal of Graph Algorithms and Applications, 7(2):141–180, 2003.MATHMathSciNetGoogle Scholar
  3. [MU10]
    H.Müller and R. Urner. On a disparity between relative cliquewidth and relative NLC-width. Discrete Applied Mathematics, 158(7):828–840, 2010.MATHCrossRefMathSciNetGoogle Scholar
  4. [GW05]
    F. Gurski and E. Wanke. On the relationship between NLC-width and linear NLC-width. Theoretical Computer Science, 347(1–2):76–89, 2005.MATHCrossRefMathSciNetGoogle Scholar
  5. [Wan94]
    E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied Mathematics, 54:251–266, 1994.MATHCrossRefMathSciNetGoogle Scholar
  6. [GW00]
    F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs without \({K}_{n,n}\). In Proceedings of the 26th International Workshop on Graph-Theoretic Concepts in Computer Science, pages 196–205. Springer-Verlag Lecture Notes in Computer Science #1938, June 2000.Google Scholar
  7. [BELL06]
    A. Brandstädt, J. Engelfriet, H. Le, and V. Lozin. Clique-width for four-vertex forbidden subgraphs. Theory of Computing Systems, 39(4):561–590, 2006.MATHCrossRefMathSciNetGoogle Scholar
  8. [BXTV09]
    B. Bui-Xuan, J. Telle, and M. Vatshelle. Boolean-width of graphs. In Proceedings of the 4th International Workshop on Parameterized and Exact Computation, pages 61–74. Springer-Verlag Lecture Notes in Computer Science #5917, September 2009.Google Scholar
  9. [CMR00]
    B. Courcelle, J. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000.MATHCrossRefMathSciNetGoogle Scholar
  10. [BDLM05]
    A. Brandstädt, F. Dragan, H. Le, and R. Mosca. New graph classes of bounded clique width. Theory of Computing Systems, 38(5):623–645, 2005.MATHCrossRefMathSciNetGoogle Scholar
  11. [LR04]
    V. Lozin and D. Rautenbach. On the band-, tree-, and clique-width of graphs with bounded vertex degree. SIAM Journal on Discrete Mathematics, 18(1):195–206, 2004.MATHCrossRefMathSciNetGoogle Scholar
  12. [Oum08]
    S. Oum. Approximating rank-width and clique-width quickly. ACM Transactions on Algorithms, 5(1):1–20, 2008.CrossRefMathSciNetGoogle Scholar
  13. [FGLS09]
    F. Fomin, P. Golovach, D. Lokshtanov, and S. Saurabh. Clique-width: On the price of generality. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 825–834. Society for Industrial and Applied Mathematics, January 2009.Google Scholar
  14. [HOSG08]
    P. Hlinený, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-width and their applications. Computer Journal, 51(3):326–362, 2008.CrossRefGoogle Scholar
  15. [KR03]
    D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed clique-width. Discrete Applied Mathematics, 126(2–3):197–221, 2003.MATHCrossRefMathSciNetGoogle Scholar
  16. [EGW01]
    W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In Proceedings of the 27th International Workshop on Graph-Theoretic Concepts in Computer Science, pages 117–128. Springer-Verlag Lecture Notes in Computer Science #2204, June 2001.Google Scholar
  17. [FRRS06]
    M. Fellows, F. Rosamond, U. Rotics, and S. Szeider. Clique-width minimization is NP-hard. In Proceedings of the 38th ACM Symposium on Theory of Computing, pages 354–362. ACM Press, May 2006.Google Scholar
  18. [GK03]
    M. Gerber and D. Kobler. Algorithms for vertex-partitioning problems on graphs with fixed clique-width. Theoretical Computer Science, 299(1–3):719–734, 2003.MATHCrossRefMathSciNetGoogle Scholar
  19. [CO00]
    B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete Applied Mathematics, 101:77–114, 2000.MATHCrossRefMathSciNetGoogle Scholar
  20. [KLM09]
    M. Kaminski, V. Lozin, and M. Milanic. Recent developments on graphs of bounded clique-width. Discrete Applied Mathematics, 157(12):2747–2761, 2009.MATHCrossRefMathSciNetGoogle Scholar
  21. [CR05]
    D. Corneil and U. Rotics. On the relationship between clique-width and treewidth. SIAM Journal on Computing, 4:825–847, 2005.CrossRefMathSciNetGoogle Scholar
  22. [Rao08]
    M. Rao. Clique-width of graphs defined by one-vertex extensions. Discrete Mathematics, 308(24):6157–6165, 2008.MATHCrossRefMathSciNetGoogle Scholar
  23. [GW06]
    F. Gurski and E. Wanke. Vertex disjoint paths on clique-width bounded graphs. Theoretical Computer Science, 359(1–3):188–199, 2006.MATHCrossRefMathSciNetGoogle Scholar
  24. [OS06]
    S. Oum and P. Seymour. Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B, 96(4):514–528, 2006.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frank Gurski
    • 1
  • Irene Rothe
    • 2
  • Jörg Rothe
    • 1
  • Egon Wanke
    • 1
  1. 1.Institut für InformatikHeinrich-Heine-Universität DüsseldorfDüsseldorfDeutschland
  2. 2.Fachbereich für Maschinenbau Elektrotechnik und TechnikjournalismusHochschule Bonn-Rhein-SiegSankt AugustinDeutschland

Personalised recommendations