Advertisement

Baumweitebeschränkte Graphen

  • Frank Gurski
  • Irene Rothe
  • Jörg Rothe
  • Egon Wanke
Chapter
Part of the eXamen.press book series (EXAMEN)

Zusammenfassung

Nun betrachten wir Parametrisierungen, die die Weite eines Graphen messen, wenn dieser in einer speziellen Baumstruktur repräsentiert wird. Entlang dieser Baumstruktur können viele an sich schwere Probleme auf Graphen mit beschränktem Parameter effizient im Sinne von FPT-Algorithmen gelöst werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [INZ03]
    T. Ito, T. Nishizeki, and X. Zhou. Algorithms for multicolorings of partial k-trees. IEICE Transactions on Information and Systems, E86-D:191–200, 2003.Google Scholar
  2. [Arn85]
    S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability – A survey. BIT, 25:2–23, 1985.MATHCrossRefMathSciNetGoogle Scholar
  3. [Ros74]
    D. Rose. On simple characterizations of k-trees. Discrete Mathematics, 7:317–322, 1974.MATHMathSciNetGoogle Scholar
  4. [ACP87]
    S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in a .k-tree. SIAM Journal of Algebraic and Discrete Methods, 8(2):277–284, 1987.MATHCrossRefMathSciNetGoogle Scholar
  5. [Chl02]
    J. Chlebikova. Partial .k-trees with maximum chromatic number. Discrete Mathematics, 259(1–3):269–276, 2002.MATHCrossRefMathSciNetGoogle Scholar
  6. [BK08]
    H. Bodlaender and A. Koster. Combinatorial optimization on graphs of bounded tree-width. Computer Journal, 51(3):255–269, 2008.CrossRefMathSciNetGoogle Scholar
  7. [ZFN00]
    X. Zhou, K. Fuse, and T. Nishizeki. A linear time algorithm for finding \([g,f]\)-colorings of partial k-trees. Algorithmica, 27(3):227–243, 2000.MATHCrossRefMathSciNetGoogle Scholar
  8. [Bod98]
    H. Bodlaender. A partial .k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209:1–45, 1998.MATHCrossRefMathSciNetGoogle Scholar
  9. [FKTV08]
    F. Fomin, D. Kratsch, I. Todinca, and Y. Villanger. Exact algorithms for treewidth and minimum fill-in. SIAM Journal on Computing, 38(3):1058–1079, 2008.MATHCrossRefMathSciNetGoogle Scholar
  10. [Klo94]
    T. Kloks. Treewidth: Computations and Approximations. Springer-Verlag Lecture Notes in Computer Science #842, 1994.Google Scholar
  11. [KZN00]
    M. Kashem, X. Zhou, and T. Nishizeki. Algorithms for generalized vertex-rankings of partial k-trees. Theoretical Computer Science, 240(2):407–427, 2000.MATHCrossRefMathSciNetGoogle Scholar
  12. [Bod88]
    H. Bodlaender. Planar graphs with bounded treewidth. Technical Report RUU-CS-88-14, Universiteit Utrecht, 1988.Google Scholar
  13. [Bod96]
    H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.MATHCrossRefMathSciNetGoogle Scholar
  14. [Hal76]
    R. Halin. S-functions for graphs. Journal of Geometry, 8:171–176, 1976.MATHCrossRefMathSciNetGoogle Scholar
  15. [Bod86]
    H. Bodlaender. Classes of graphs with bounded treewidth. Technical Report RUU-CS-86-22, Universiteit Utrecht, 1986.Google Scholar
  16. [AP89]
    S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial .k-trees. Discrete Applied Mathematics, 23:11–24, 1989.MATHCrossRefMathSciNetGoogle Scholar
  17. [RS86]
    N. Robertson and P. Seymour. Graph minors II. Algorithmic aspects of tree width. Journal of Algorithms, 7:309–322, 1986.MATHCrossRefMathSciNetGoogle Scholar
  18. [ALS91]
    S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. Journal of Algorithms, 12(2):308–340, 1991.MATHCrossRefMathSciNetGoogle Scholar
  19. [BM93]
    H. Bodlaender and R. Möhring. The pathwidth and treewidth of cographs. SIAM Journal on Discrete Mathematics, 6(2):181–188, 1993.MATHCrossRefMathSciNetGoogle Scholar
  20. [RS91]
    N. Robertson and P. Seymour. Graph minors X. Obstructions to tree-decompositions. Journal of Combinatorial Theory, Series B, 52:153–190, 1991.MATHCrossRefMathSciNetGoogle Scholar
  21. [Cou92]
    B. Courcelle. The monadic second-order logic of graphs III: Tree-decompositions, minor and complexity issues. Informatique Théorique et Applications, 26:257–286, 1992.MATHMathSciNetGoogle Scholar
  22. [Hag00]
    T. Hagerup. Dynamic algorithms for graphs of bounded treewidth. Algorithmica, 27(3):292–315, 2000.MATHCrossRefMathSciNetGoogle Scholar
  23. [RS83]
    N. Robertson and P. Seymour. Graph minors I. Excluding a forest. Journal of Combinatorial Theory, Series B, 35:39–61, 1983.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frank Gurski
    • 1
  • Irene Rothe
    • 2
  • Jörg Rothe
    • 1
  • Egon Wanke
    • 1
  1. 1.Institut für InformatikHeinrich-Heine-Universität DüsseldorfDüsseldorfDeutschland
  2. 2.Fachbereich für Maschinenbau Elektrotechnik und TechnikjournalismusHochschule Bonn-Rhein-SiegSankt AugustinDeutschland

Personalised recommendations