Skip to main content

Domain Wall Spin Structures and Dynamics Probed by Synchrotron Techniques

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 133))

Abstract

Synchrotron-based magnetic imaging techniques have proven to be powerful for the investigation of geometrically confined magnetic domain walls and their dynamics due to the interaction with fields and spin-polarized currents. The application of different high resolution imaging techniques allows one to determine the nanoscale domain wall spin structures, which are comprehensively reviewed. Different domain wall types are observed depending on the materials and the geometries resulting from the interplay of the micromagnetic energy terms. When currents are injected into the nanostructures, the interaction between the spin-polarized charge carriers and the magnetization leads to current-induced domain wall motion due to the spin transfer torque effect, which is studied by direct imaging. Domain wall motion can be induced by field pulses, and imaging with sub-nanosecond time resolution of the domain wall dynamics is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.R. McFadyen, E.E. Fullerton, M.J. Carey, MRS Bull. 31, 379 (2006)

    Google Scholar 

  2. R. Cowburn, D. Petit, D. Read, O. Petracic, Patent WO 2007/132174A1, 2007

    Google Scholar 

  3. D. Ilgaz, et al., Appl. Phys. Lett. 93, 132503 (2008)

    Article  ADS  Google Scholar 

  4. S.S.P. Parkin, US patent 6,834,005 and patent application 10/984,055, 2004

    Google Scholar 

  5. S.S.P. Parkin et al., Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  6. M. Kläui, C.A.F. Vaz, in Handbook of Magnetism and Advanced Magnetic Materials, Vol. 2, ed. by H. Kronmüller, S.S.P. Parkin (John Wiley and Sons, Chichester, 2007)

    Google Scholar 

  7. A. Hubert, R. Schäfer, Magnetic Domains - The Analysis of Magnetic Microstructures (Springer, Berlin, 1998)

    Google Scholar 

  8. L.D. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935)

    MATH  Google Scholar 

  9. L. Néel, Comptes Rendus hebdomadaires des Séances de l’Académie des Sciences 249, 533 (1955)

    Google Scholar 

  10. F. Bloch, Z. Phys. A 74, 295 (1932)

    MATH  Google Scholar 

  11. J. Rothman, et al., Phys. Rev. Lett. 86, 1098 (2001)

    Article  ADS  Google Scholar 

  12. S.P. Li, et al., Phys. Rev. Lett. 86, 1102 (2001)

    Article  ADS  Google Scholar 

  13. M. Kläui, C.A.F. Vaz, L. Lopez-Diaz, J.A.C. Bland, J. Phys. Cond. Matter 15, R985 (2003)

    Article  ADS  Google Scholar 

  14. M. Kläui, J. Phys. Condens. Matter 20, 313001 (2008)

    Article  ADS  Google Scholar 

  15. J.I. Martin, et al., J. Magn. Magn. Mater. 256, 449 (2002)

    Article  ADS  Google Scholar 

  16. D. Backes, et al., Microelectron. Eng. 83, 1726 (2006)

    Article  Google Scholar 

  17. L.J. Heyderman, et al., J. Appl. Phys. 93, 10011 (2003)

    Article  ADS  Google Scholar 

  18. H. Kronmüller, S.S.P. Parkin, (eds.), Handbook of Magnetism and Advanced Magnetic Materials, Vol. 3 (John Wiley and Sons, Chichester, 2007)

    Google Scholar 

  19. J. Stöhr, et al., Science 259, 658 (1993)

    ADS  Google Scholar 

  20. J. Stöhr, S. Anders, IBM J. Res. Dev. 44, 535 (2000)

    Article  Google Scholar 

  21. P. Fischer, Curr. Opin. Solid State Mater. Sci. 7, 173 (2003)

    Article  Google Scholar 

  22. A.L.D. Kilcoyne, et al., J. Synchrotron Radiat. 10, 125 (2003)

    Article  Google Scholar 

  23. H. Kronmüller, M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids, (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  24. J. Miltat, M.J. Donahue, in Handbook of Magnetism and Advanced Magnetic Materials, Vol. 2, ed. by H. Kronmüller, S.S.P. Parkin (John Wiley and Sons, Chichester, 2007)

    Google Scholar 

  25. T. Schrefl, et al., in Handbook of Magnetism and Advanced Magnetic Materials, Vol. 2, ed. by H. Kronmüller, S.S.P. Parkin (John Wiley and Sons, Chichester, 2007)

    Google Scholar 

  26. A. Thiaville, Y. Nakatani, in Spin Dynamics in Confined Magnetic Structures III, ed. by B. Hillebrands, K. Ounadjela (Springer, Berlin, 2006)

    Google Scholar 

  27. R.D. McMichael, M.J. Donahue, IEEE Trans. Magn. 33, 4167 (1997)

    Article  ADS  Google Scholar 

  28. A. Wachowiak, et al., Science 298, 577 (2002)

    Article  ADS  Google Scholar 

  29. F. Jungi0nger, et al., Appl. Phys. Lett. 92, 112502 (2008)

    Google Scholar 

  30. E. Feldtkeller, et al., Phys. Condens. Mater. 4, 8 (1965)

    ADS  Google Scholar 

  31. Y. Nakatani, A. Thiaville, J. Miltat, J. Magn. Magn. Mater. 290–291, 750 (2005)

    Article  Google Scholar 

  32. D. Backes, et al., Appl. Phys. Lett. 91, 112502, (2007)

    Article  ADS  Google Scholar 

  33. N. Kazantseva, R. Wieser, U. Nowak, Phys. Rev. Lett. 94, 037206 (2005)

    Article  ADS  Google Scholar 

  34. L.N. Bulaevskii, V.L. Ginzburg, Sov. Phys. JETP 18, 530 (1964)

    Google Scholar 

  35. M. Kläui, et al., Appl. Phys. Lett. 85, 5637 (2004)

    Article  ADS  Google Scholar 

  36. M. Laufenberg, et al., Appl. Phys. Lett. 88, 052507 (2006)

    Article  ADS  Google Scholar 

  37. Y.G. Yoo, et al., Appl. Phys. Lett. 82, 2470 (2003)

    Article  ADS  Google Scholar 

  38. M. Laufenberg, et al., Appl. Phys. Lett. 88, 212510 (2006)

    Article  ADS  Google Scholar 

  39. T.J. Bromwich, et al., J. Appl. Phys. 99, 08H304 (2006)

    Google Scholar 

  40. M. Kläui, et al., Physica B 343, 343 (2004)

    Article  ADS  Google Scholar 

  41. The OOMMF package is available at http://math.nist.gov/oommf.Please update the reference [41].

  42. L. Heyne, et al., J. Appl. Phys. 103, 07D928 (2008)

    Google Scholar 

  43. G. Meier, et al., Phys. Rev. Lett. 98, 187202 (2007)

    Article  ADS  Google Scholar 

  44. B. van Waeyenberge, et al., Nature 444, 461 (2006)

    Article  ADS  Google Scholar 

  45. K.W. Chou, et al., Appl. Phys. Lett. 90, 202505 (2007)

    Article  ADS  Google Scholar 

  46. C.A.F. Vaz, et al., Phys. Rev. B 72, 224426 (2005)

    Article  ADS  Google Scholar 

  47. M. Kläui, et al., J. Appl. Phys. 99, 08G308 (2006)

    Google Scholar 

  48. E.M. Hempe, et al., Physica Status Solidi. A 204, 3922 (2007)

    Article  ADS  Google Scholar 

  49. M. Kläui, et al., Appl. Phys. Lett. 88, 232507 (2006)

    Article  ADS  Google Scholar 

  50. M.H. Park, et al., Phys. Rev. B 73, 094424 (2006)

    Article  ADS  Google Scholar 

  51. D. McGrouther, et al., Appl. Phys. Lett. 91, 22506 (2007)

    Article  Google Scholar 

  52. Y.S. Dedkov, et al., Appl. Phys. Lett. 80, 4181 (2002)

    Article  ADS  Google Scholar 

  53. M. Ziese, et al., Phys. Rev. B 02, 134408 (2002)

    Article  ADS  Google Scholar 

  54. C. Hartung, Diploma Thesis, Konstanz (2006)

    Google Scholar 

  55. W.F. Brown jr., Micromagnetics (Interscience Publishers, New York, 1963)

    Google Scholar 

  56. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69, 990 (2005)

    Article  ADS  Google Scholar 

  57. S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)

    Article  ADS  Google Scholar 

  58. S.E. Barnes, S. Maekawa, in Concepts in Spin Electronics, ed. by S. Maekawa (Oxford University Press, Oxford, 2006)

    Google Scholar 

  59. N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)

    Article  ADS  Google Scholar 

  60. J.Y. Lee, et al., Phys. Rev. B 76, 184408 (2007)

    Article  ADS  Google Scholar 

  61. Y. Nakatani, A. Thiaville, J. Miltat, Nat. Mater. 2, 521 (2003)

    Article  ADS  Google Scholar 

  62. T. Ono, et al., Science 284, 468 (1999)

    Article  ADS  Google Scholar 

  63. M. Hayashi, et al., Nat. Phys. 3, 21 (2007)

    Article  Google Scholar 

  64. G.S.D. Beach, et al., Nat. Mater. 4, 741 (2005)

    Article  ADS  Google Scholar 

  65. C. Schieback, et al., Eur. Phys. J. B 59, 429 (2007)

    Article  ADS  MATH  Google Scholar 

  66. L. Berger, J. Appl. Phys. 55, 1954 (1973)

    Article  ADS  Google Scholar 

  67. A. Yamaguchi, et al., Phys. Rev. Lett. 92, 077205 (2004)

    Article  ADS  Google Scholar 

  68. M. Kläui, et al., Phys. Rev. Lett. 94, 106601 (2005)

    Article  ADS  Google Scholar 

  69. M. Kläui, et al., Phys. Rev. Lett. 95, 026601 (2005)

    Article  ADS  Google Scholar 

  70. L. Thomas, et al., Nature 443, 197 (2006)

    Article  ADS  Google Scholar 

  71. J. Grollier, et al., Appl. Phys. Lett. 83, 509 (2003)

    Article  ADS  Google Scholar 

  72. C.H. Marrows, Adv. Phys. 54, 585 (2005)

    Article  ADS  Google Scholar 

  73. M. Hayashi, et al., Phys. Rev. Lett. 98, 37204 (2007)

    Article  ADS  Google Scholar 

  74. L. Heyne, et al., Phys. Rev. Lett. 100, 66603 (2008)

    Article  ADS  Google Scholar 

  75. G. Tatara, H. Kohno, Phys. Rev. Lett. 92, 086601 (2004)

    Article  ADS  Google Scholar 

  76. A. Yamaguchi, et al., Phys. Rev. B 78, 104401 (2008)

    Article  ADS  Google Scholar 

  77. A. Thiaville, Y. Nakatani, J. Appl. Phys. 104, 093701 (2008)

    Article  ADS  Google Scholar 

  78. M. Bolte, et al., Phys. Rev. Lett. 100, 176601 (2008)

    Article  ADS  Google Scholar 

  79. J. Raabe, et al., Phys. Rev. Lett. 94, 217204 (2005)

    Article  ADS  Google Scholar 

  80. K. Kuepper, et al., Phys. Rev. Lett. 99, 167202 (2007)

    Article  ADS  Google Scholar 

  81. D. Bedau, et al., Phys. Rev. Lett. 99, 146601 (2007)

    Article  ADS  Google Scholar 

  82. J. Rhensius, PhD thesis, Konstanz (2010)

    Google Scholar 

Download references

Acknowledgements

Support by the Deutsche Forschungsgemeinschaft through SFB 513, SFB 767, project KL1811, the Landesstiftung Baden-Württemberg, the EPSRC (U. K.), the Samsung Advanced Institute of Technology, and the EU through the European Regional Development Fund (Interreg III A Program), the Marie Curie Research Training Network SPINSWITCH (MRTN-CT-2006-035327) as well as the European Research Council (Starting Independent Researcher Grant ERC-2007-StG 208162) is greatly acknowledged. A large number of PhD students, postdocs, and colleagues have contributed to the various aspects of this work and all the support, help, and encouragement is gratefully acknowledged. Continuous support by the late J. A. C. Bland and U. Rüdiger was crucial to the success of the work at many stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kläui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kläui, M. (2010). Domain Wall Spin Structures and Dynamics Probed by Synchrotron Techniques. In: Beaurepaire, E., Bulou, H., Scheurer, F., Jean-Paul, K. (eds) Magnetism and Synchrotron Radiation. Springer Proceedings in Physics, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04498-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04498-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04497-7

  • Online ISBN: 978-3-642-04498-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics