Skip to main content

Analysis and Optimization of Cryptographically Generated Addresses

  • Conference paper
Information Security (ISC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5735))

Included in the following conference series:

Abstract

The need for nodes to be able to generate their own address and verify those from others, without relying on a global trusted authority, is a well-known problem in networking. One popular technique for solving this problem is to use self-certifying addresses that are widely used and standardized; a prime example is cryptographically generated addresses (CGA). We re-investigate the attack models that can occur in practice and analyze the security of CGA-like schemes. As a result, an alternative protocol to CGA, called CGA++, is presented. This protocol eliminates several attacks applicable to CGA and increases the overall security. In many ways, CGA++ offers a nice alternative to CGA and can be used notably for future developments of the Internet Protocol version 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aura, T.: Cryptographically Generated Addresses (CGA). In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 29–43. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Aura, T., Roe, M.: Strengthening Short Hash Values, http://research.microsoft.com/en-us/um/people/tuomaura/misc/aura-roe-submission.pdf

  3. Arkko, J., Kempf, J., Zill, B., Nikander, P.: SEcure Neighbor Discovery (SEND). RFC 3971, IETF (March 2005), http://www.ietf.org/rfc/rfc3971.txt

  4. Nordmark, E., Bagnulo, M.: Multihoming L3 Shim Approach (July 2005), http://tools.ietf.org/html/draft-nordmark-multi6dt-shim-00.txt

  5. Johnson, D., Perkins, C., Arkko, J.: Mobility Support in IPv6. RFC 3775, IETF (June 2004), http://www.ietf.org/rfc/rfc3775.txt

  6. O’Shea, G., Roe, M.: Child-proof Authentication for MIPv6 (CAM). Computer Communication Review 31(2), 4–8 (2001)

    Article  Google Scholar 

  7. Nikander, P.: A Scalable Architecture for IPv6 Address Ownership, Internet Draft (2001)

    Google Scholar 

  8. Montenegro, G., Castelluccia, C.: Statistically Unique and Cryptographically Verifiable (SUCV) Identifiers and Addresses. In: NDSS, The Internet Society (2002)

    Google Scholar 

  9. Aura, T.: Cryptographically Generated Addresses (CGA). RFC 3972, IETF (March 2005), http://www.ietf.org/rfc/rfc3972.txt

  10. Hinden, R., Deering, S.: Internet Protocol Version 6 Addressing Architecture. RFC 4291, IETF (February 2006), http://www.ietf.org/rfc/rfc4291.txt

  11. Hinden, R., Deering, S., Nordmark, E.: IPv6 Global Unicast Address Format. RFC 3587, IETF (August 2003), http://www.ietf.org/rfc/rfc3587.txt

  12. National Institute of Standards and Technology: Secure hash standard. FIPS 180-1, NIST (April 1995)

    Google Scholar 

  13. Bagnulo, M., Arkko, J.: Support for Multiple Hash Algorithms in Cryptographically Generated Addresses (CGAs). RFC 4982, IETF (July 2007), http://www.ietf.org/rfc/rfc4982.txt

  14. OpenSSL: The Open Source Toolkit for SSL/TLS (2008), http://www.openssl.org/

  15. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Cryptographic Systems, http://bench.cr.yp.to (accessed January 7, 2009)

  16. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM, 42–111 (February 1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bos, J.W., Özen, O., Hubaux, JP. (2009). Analysis and Optimization of Cryptographically Generated Addresses. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds) Information Security. ISC 2009. Lecture Notes in Computer Science, vol 5735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04474-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04474-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04473-1

  • Online ISBN: 978-3-642-04474-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics