Swimming Simulation: A New Tool for Swimming Research and Practical Applications

  • Daniel A. Marinho
  • Tiago M. Barbosa
  • Per L. Kjendlie
  • João P. Vilas-Boas
  • Francisco B. Alves
  • Abel I. Rouboa
  • António J. Silva
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 72)

Abstract

This chapter covers topics in swimming simulation from a computational fluid dynamics perspective. This perspective means emphasis on the fluid mechanics and CFD methodology applied in swimming research. We concentrated on numerical simulation results, considering the scientific simulation point-of-view and especially the practical implications with swimmers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Our research has been supported by the Portuguese Government by a grant of the Science and Technology Foundation (SFRH/BD/25241/2005; PTDC/DES/098532/2008).

References

  1. 1.
    Dickinson MH (2000) How animals move: an integrative view. Science 288: 100–106.CrossRefGoogle Scholar
  2. 2.
    Arellano R, Nicoli-Terrés JM, Redondo JM (2006) Fundamental hydrodynamics of swimming propulsion. Port J Sport Sci 6(Suppl.2): 15–20.Google Scholar
  3. 3.
    Fluent (2004) Speedo goes for gold with CFD. Fluent News 13(1): 4–6.Google Scholar
  4. 4.
    Boulding N, Yim SS, Keshavarz-Moore E, Ayazi Shamlou P, Berry M (2002) Ultra scaledown to predict filtering centrifugation of secreted antibody fragments from fungal broth. Biotechnol Bioeng 79(4): 381–388.CrossRefGoogle Scholar
  5. 5.
    Marshall I, Zhao S, Papathanasopoulou P, Hoskins P, Xui Y (2004) MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J Biomech 37: 679–687.CrossRefGoogle Scholar
  6. 6.
    Dabnichki P, Avital E (2006) Influence of the position of crew members on aerodynamics performance of two-man bobsleigh. J Biomech 39(15): 2733–2742.CrossRefGoogle Scholar
  7. 7.
    Guerra D, Ricciardi L, Laborde JC, Domenech S (2007) Predicting gaseous pollutant dispersion around a workplace. J Occup Environ Hyg 4(8): 619–633.CrossRefGoogle Scholar
  8. 8.
    Berthier B, Bouzebar R, Legallais L (2002) Blood flow patterns in an automatically realistic coronary vessel influence of three different reconstruction models. J Biomech 35(10): 1347–1356.CrossRefGoogle Scholar
  9. 9.
    Ruiz P, Ruiz F, López A, Español C (2005) Computational fluid dynamics simulations of the airflow in the human nasal cavity. Acta Otorrinolaringol Esp 56(9): 403–410.Google Scholar
  10. 10.
    Liu H, Wassersug R, Kawachi K (1996) A computational fluid dynamics study of tadpole swimming. J Exp Biol 199(6): 1245–1260.Google Scholar
  11. 11.
    Liu H, Wassersug R, Kawachi K (1997) The three-dimensional hydrodynamics of tadpole locomotion. J Exp Biol 200(22): 2807–2819.Google Scholar
  12. 12.
    Liu H, Ellington C, Kawachi K (1998) A computational fluid dynamic study of hawkmoth hovering. J Exp Biol 201(4): 461–477.Google Scholar
  13. 13.
    Pallis JM, Banks DW, Okamoto KK (2000) 3D computational fluid dynamics in competitive sail, yatch and windsurfer design. In: Subic F, Haake M (eds) The engineering of sport: research, development and innovation: 75–79. Blackwell Science, Oxford.Google Scholar
  14. 14.
    Kellar WP, Pearse SRG, Savill AM (1999) Formula 1 car wheel aerodynamics. Sports Eng 2(4): 203–212.CrossRefGoogle Scholar
  15. 15.
    Bixler BS, Schloder M (1996) Computational fluid dynamics: an analytical tool for the 21st century swimming scientist. J Swim Res 11: 4–22.Google Scholar
  16. 16.
    Rouboa A, Silva A, Leal L, Rocha J, Alves F (2006) The effect of swimmer’s hand/forearm acceleration on propulsive forces generation using computational fluid dynamics. J Biomech 39(7): 1239–1248.CrossRefGoogle Scholar
  17. 17.
    Lyttle A, Keys M (2006) The application of computational fluid dynamics for technique prescription in underwater kicking. Port J Sport Sci 6(Suppl. 2): 233–235.Google Scholar
  18. 18.
    Marinho DA, Reis VM, Alves FB, Vilas-Boas JP, Machado L, Silva AJ, Rouboa AI (2009a) The hydrodynamic drag during gliding in swimming. J Appl Biomech 25(3): 253-257.Google Scholar
  19. 19.
    Liu H (2002) Computational biological fluid dynamics: digitizing and visualizing animal swimming and flying. Integr Comp Biol 42: 1050–1059.CrossRefGoogle Scholar
  20. 20.
    Sane S (2003) The aerodynamics of insect flight. J Exp Biol 206: 4191–4208.CrossRefGoogle Scholar
  21. 21.
    Ellington CP, Van den Berg C, Willmott AP, Thomas AL (1996) Leading-edge vortices in insect flight. Nature 384: 626–630.CrossRefGoogle Scholar
  22. 22.
    Liu H, Kawachi K (1998) A numerical study of insect flight. J Comput Phys 146: 124–156.MATHCrossRefGoogle Scholar
  23. 23.
    Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284: 1954–1960.CrossRefGoogle Scholar
  24. 24.
    Wang ZJ (2000) Two dimensional mechanism for insect hovering. Phys Rev Lett 85: 2216–2219.CrossRefGoogle Scholar
  25. 25.
    Hamdani H, Sun M (2001) A study on the mechanism of high-lift generation by an airfoil in unsteady motion at low Reynolds number. Acta Mech Sin 17: 97–114.CrossRefGoogle Scholar
  26. 26.
    Wang ZJ (2004) The role of drag in insect hovering. J Exp Biol 207: 4147–4145.CrossRefGoogle Scholar
  27. 27.
    Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205: 1507–1518.Google Scholar
  28. 28.
    Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205: 55–70.Google Scholar
  29. 29.
    Dickinson MH, Gotz KG (1993) Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol 174: 45–64.Google Scholar
  30. 30.
    Colwin C (1984) Fluid dynamics: vortex circulation in swimming propulsion. In: Welsh T.F (ed) American swimming coaches association world clinic yearbook 1984: 38–46. American Swimming Coaches Association, Fort Lauderdale.Google Scholar
  31. 31.
    Toussaint HM, Van den Berg C, Beek WJ (2002) “Pumped-up propulsion” during front crawl swimming. Med Sci Sports Exerc 34(2): 314–319.CrossRefGoogle Scholar
  32. 32.
    Hannah RK (2002) Can CFD make a performance difference in Sport? In: Ujihashi S (ed) The engineering of sport: 17–30. Blackwell Science, Oxford.Google Scholar
  33. 33.
    Bixler BS, Riewald S (2002) Analysis of swimmer’s hand and arm in steady flow conditions using computational fluid dynamics. J Biomech 35: 713–717.CrossRefGoogle Scholar
  34. 34.
    Bixler B, Pease D, Fairhurst F (2007) The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer. Sports Biomech 6(1): 81–98.CrossRefGoogle Scholar
  35. 35.
    Silva AJ, Rouboa A, Leal L, Rocha J, Alves F, Moreira A, Reis VM, Vilas-Boas JP (2005) Measurement of swimmer’s hand/forearm propulsive forces generation using computational fluid dynamics. Port J Sport Sci 5(3): 288–297.Google Scholar
  36. 36.
    Wood TC (1977) A fluid dynamic analysis of the propulsive potential of the hand and forearm in swimming. Master of Science Thesis. Dalhouise University Press, Halifax.Google Scholar
  37. 37.
    Schleihauf RE (1979) A hydrodynamic analysis of swimming propulsion. In: Terauds J, Bedingfield EW (eds.) Swimming III: 70–109. University Park Press, Baltimore.Google Scholar
  38. 38.
    Berger MA, de Groot G, Hollander AP (1995) Hydrodynamic drag and lift forces on human hand arm models. J Biomech 28(2): 125–133.CrossRefGoogle Scholar
  39. 39.
    Sanders RH (1999) Hydrodynamic characteristics of a swimmer’s hand. J Appl Biomech 15: 3–26.Google Scholar
  40. 40.
    Gardano P, Dabnichki P (2006) On hydrodynamics of drag and lift of the human arm. J Biomech 39: 2767–2773.CrossRefGoogle Scholar
  41. 41.
    Vilas-Boas JP, Costa L, Fernandes R, Ribeiro J, Figueiredo P, Marinho D, Silva A, Rouboa A, Machado L (2008) Determinação do arrasto hidrodinâmico em duas posições de deslize, por dinâmica inversa e por simulação computacional (CFD). In II Congreso Internacional de Biomecánica de Venezuela. Ministério del Poder Popular para el Deporte de Venezuela, Isla de Margarita, Venezuela.Google Scholar
  42. 42.
    Moreira A, Rouboa A, Silva AJ, Sousa L, Marinho D, Alves F, Reis V, Vilas-Boas JP, Carneiro A, Machado L (2006) Computational analysis of the turbulent flow around a cylinder. Port J Sport Sci 6(Suppl. 1): 105.Google Scholar
  43. 43.
    Zaidi H, Taiar R, Fohanno S, Polidori G (2008) Analysis of the effect of swimmer’s head position on swimming performance using computational fluid dynamics. J Biomech 41: 1350–1358.CrossRefGoogle Scholar
  44. 44.
    Marinho DA, Reis VM, Alves FB, Vilas-Boas JP, Machado L, Rouboa AI, Silva AJ (2009b) The use of Computational Fluid Dynamics in swimming research. Int J Comput Vis Biomech (in press).Google Scholar
  45. 45.
    Lecrivain G, Slaouti A, Payton C, Kennedy I (2008) Using reverse engineering and computational fluid dynamics to investigate a lower arm amputee swimmer’s performance. J Biomech 41: 2855–2859.CrossRefGoogle Scholar
  46. 46.
    Marinho DA, Reis VM, Vilas-Boas JP, Alves FB, Machado L, Rouboa AI, Silva AJ (2009c) Design of a three-dimensional hand/forearm model to apply Computational Fluid Dynamics. Braz Arch Biol Technol (in press).Google Scholar
  47. 47.
    Silva AJ, Marinho DA, Reis VM, Alves F, Vilas-Boas JP, Machado L, Rouboa AI (2008a) Study of the propulsive potential of the hand and forearm in swimming. Med Sci Sports Exerc 40(5 Suppl): S212.Google Scholar
  48. 48.
    Sato Y, Hino T (2002) Estimation of thrust of swimmer’s hand using CFD. In: Proceedings of 8th symposium on nonlinear and free-surface flows: 71–75. Hiroshima.Google Scholar
  49. 49.
    Sato Y, Hino T (2003) Estimation of thrust of swimmer’s hand using CFD. In: Proceedings of second international symposium on aqua bio-mechanisms: 81–86. Honolulu-USA.Google Scholar
  50. 50.
    Hollander A, de Groot G, Schenau G, Kahman R, Toussaint H (1988) Contribution of the legs to propulsion in front crawl swimming. In: Ungerechts B, Wilke K, Reischle K (eds) Swimming science V: 39–43. Human Kinetics Books. Champaign, Illinois.Google Scholar
  51. 51.
    Deschodt V (1999) Relative contribution of arms and legs in human to propulsion in 25 m sprint front crawl swimming. Eur J Appl Physiol 80: 192–199.CrossRefGoogle Scholar
  52. 52.
    Marinho DA, Rouboa AI, Alves FB, Vilas-Boas JP, Machado L, Reis VM, Silva AJ (2009d) Hydrodynamic analysis of different thumb positions in swimming. J Sports Sci and Med 8(1): 58–66.Google Scholar
  53. 53.
    Takagi H, Shimizu Y, Kurashima A, Sanders R (2001) Effect of thumb abduction and adduction on hydrodynamic characteristics of a model of the human hand. In: Blackwell J, Sanders R (eds) Proceedings of swim sessions of the XIX international symposium on biomechanics in sports: 122–126. University of San Francisco, San Francisco.Google Scholar
  54. 54.
    Marinho DA, Barbosa TM, Reis VM, Kjendlie PL, Alves FB, Vilas-Boas JP, Machado L, Rouboa AI, Silva AJ (2009e) Swimming propulsion forces are enhanced by a small finger spread. J Appl Biomech (in press).Google Scholar
  55. 55.
    Silva AJ, Rouboa A, Moreira A, Reis VM, Alves F, Vilas-Boas JP, Marinho DA (2008b) Analysis of drafting effects in swimming using computational fluid dynamics. J Sports Sci Med 7(1): 60–66.Google Scholar
  56. 56.
    Lyttle A, Blanksby B, Elliott B, Lloyd D (2000) Net forces during tethered simulation of underwater streamlined gliding and kicking technique of the freestyle turn. J Sports Sci 18: 801–807.CrossRefGoogle Scholar
  57. 57.
    Lyttle A, Blanksby B, Elliott B, Lloyd D (1999) Optimal depth for streamlined gliding. In: Keskinen KL, Komi PV, Hollander AP (eds) Biomechanics and medicine in swimming VIII: 165–170. Gummerus Printing, Jyvaskyla.Google Scholar
  58. 58.
    Vennell R, Pease DL, Wilson BD (2006) Wave drag on human swimmers. J Biomech 31: 664–671.CrossRefGoogle Scholar
  59. 59.
    Massey BS (1989) Mechanics of fluids. Chapman & Hall, London.Google Scholar
  60. 60.
    Polidori G, Taiar R, Fohanno S, Mai TH, Lodini A (2006) Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming. J Biomech 39(13): 2535–2541.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel A. Marinho
    • 1
  • Tiago M. Barbosa
  • Per L. Kjendlie
  • João P. Vilas-Boas
  • Francisco B. Alves
  • Abel I. Rouboa
  • António J. Silva
  1. 1.Departamento de Ciências do Desporto/CIDESDUniversidade da Beira Interior.CovilhãPortugal

Personalised recommendations