Advertisement

Using Wikipedia and Wiktionary in Domain-Specific Information Retrieval

  • Christof Müller
  • Iryna Gurevych
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

The main objective of our experiments in the domain-specific track at CLEF 2008 is utilizing semantic knowledge from collaborative knowledge bases such as Wikipedia and Wiktionary to improve the effectiveness of information retrieval. While Wikipedia has already been used in IR, the application of Wiktionary in this task is new. We evaluate two retrieval models, i.e. SR-Text and SR-Word, based on semantic relatedness by comparing their performance to a statistical model as implemented by Lucene. We refer to Wikipedia article titles and Wiktionary word entries as concepts and map query and document terms to concept vectors which are then used to compute the document relevance. In the bilingual task, we translate the English topics into the document language, i.e. German, by using machine translation. For SR-Text, we alternatively perform the translation process by using cross-language links in Wikipedia, whereby the terms are directly mapped to concept vectors in the target language. The evaluation shows that the latter approach especially improves the retrieval performance in cases where the machine translation system incorrectly translates query terms.

Keywords

Information Retrieval Semantic Relatedness Collaborative Knowledge Bases Cross-Language Information Retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA (1998)zbMATHGoogle Scholar
  2. 2.
    Voorhees, E.M.: Query expansion using lexical-semantic relations. In: SIGIR 1994: Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 61–69. Springer-Verlag New York, Inc., New York (1994)Google Scholar
  3. 3.
    Mandala, R., Tokunaga, T., Tanaka, H.: The Use of WordNet in Information Retrieval. In: Harabagiu, S. (ed.) Proceedings of the COLING-ACL workshop on Usage of WordNet in Natural Language Processing, pp. 31–37. Association for Computational Linguistics, Somerset (1998)Google Scholar
  4. 4.
    Smeaton, A.: Using NLP or NLP Resources for Information Retrieval Tasks. In: Strzalkowski, T. (ed.) Natural Language Information Retrieval, pp. 99–111. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  5. 5.
    Lytinen, S., Tomuro, N., Repede, T.: The use of WordNet sense tagging in FAQFinder. In: Proceedings of the AAAI 2000 workshop on AI and Web Search, Austin, TX (2000)Google Scholar
  6. 6.
    Müller, C., Gurevych, I., Mühlhäuser, M.: Integrating Semantic Knowledge into Text Similarity and Information Retrieval. In: Proceedings of the First IEEE International Conference on Semantic Computing (ICSC), Irvine, CA, USA, pp. 257–264 (2007)Google Scholar
  7. 7.
    Zesch, T., Müller, C., Gurevych, I.: Extracting Lexical Semantic Knowledge from Wikipedia and Wiktionary. In: Proceedings of the Conference on Language Resources and Evaluation, LREC (2008)Google Scholar
  8. 8.
    Petras, V., Baerisch, S.: The Domain-Specific Track at CLEF 2008. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 186–198. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of Conference on New Methods in Language Processing (1994)Google Scholar
  10. 10.
    Langer, S.: Zur Morphologie und Semantik von Nominalkomposita. In: Tagungsband der Konferenz zur Verarbeitung natürlicher Sprache, KONVENS, pp. 83–97 (1998)Google Scholar
  11. 11.
    Gabrilovich, E., Markovitch, S.: Computing Semantic Relatedness using Wikipedia-based Explicit Semantic Analysis. In: Proceedings of The Twentieth International Joint Conference for Artificial Intelligence, Hyderabad, India, pp. 1606–1611 (2007)Google Scholar
  12. 12.
    Müller, C., Gurevych, I.: Exploring the Potential of Semantic Relatedness in Information Retrieval. In: Schaaf, M., Althoff, K.D. (eds.) LWA 2006 Lernen - Wissensentdeckung - Adaptivität, 9.-11.10.2006 in Hildesheim. Hildesheimer Informatikberichte, pp. 126–131. Universität Hildesheim, Hildesheim (2006)Google Scholar
  13. 13.
    Zesch, T., Müller, C., Gurevych, I.: Using Wiktionary for Computing Semantic Relatedness. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, pp. 861–867 (2008)Google Scholar
  14. 14.
    Fox, E., Shaw, J.: Combination of multiple searches. In: Proceedings of the 2nd Text REtrieval Conference (TREC-2), pp. 243–252 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christof Müller
    • 1
  • Iryna Gurevych
    • 1
  1. 1.Ubiquitous Knowledge Processing Lab, Computer Science DepartmentTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations