Advertisement

Natural Scene Retrieval Based on Graph Semantic Similarity for Adaptive Scene Classification

  • Nuraini Jamil
  • Sanggil Kang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5796)

Abstract

In this paper, we introduce our method for image retrieval to access and measuring the similarity of natural scenes by using graph semantic similarity. The proposed method is motivated by continuing effort from our previous work in adaptive image classification based on semantic concepts and edge detection. The method will learn the image information by concept occurrence vector of semantic concepts such as water, grass, sky and foliage. We constructed the graph using this information and illustrate the similarity with connecting edges. The empirical results demonstrated promising performance in terms of accuracy.

Keywords

Image retrieval Graph Semantic similarity Semantic concepts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nuraini, J., Shohel, A., Kangseok, K., Sanggil, K.: Adaptive Scene Classification based on Semantic Concept and Edge Detection. Journal of Korea Industrial Information Systems Society (KIISS) (will be published) Google Scholar
  2. 2.
    Szummer, M., Picard, R.: Indoor-outdoor image classification. In: International Workshop on Content-based Access of Image and Video Databases, Bombay, India (1998)Google Scholar
  3. 3.
    Manjunath, B.S., Salembier, P., Sikora, T.: Introduction to MPEG-7 Multimedia Content Description Interface. John Wiley & Sons Ltd., England (2002)Google Scholar
  4. 4.
    Murphy, K., Torralba, A., Freeman, W.: Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes. In: Advances in Neural Information Processing Systems, vol. 16 (2004)Google Scholar
  5. 5.
    Barnard, K., Forsyth, D.: Learning the Semantics of Words and Pictures. In: Proceeding of International Conference on Computer Vision, pp. 408–415 (2001)Google Scholar
  6. 6.
    Fan, J., David, K., Yau, Y., Ahmed, K., Walid, G.: Automatic Image Segmentation by Integrating Color-Edge Extraction and Seeded Region Growing. IEEE Transactions On Image Processing 10, 1454–1466 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42(3), 145–175 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Vogel, J., Schiele, B.: Natural Scene Retrieval based on a Semantic Modeling Step. In: Conference on Image and Video Retrieval, Dublin, Ireland (2004)Google Scholar
  9. 9.
    MacArthur, S.D., Brodley, C.E., Kak, A.C.: Interactive content-based image retrieval using relevance feedback. Computer Vision and Image Understanding 88, 55–75 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Mori, J., Tsujishita, T., Matsuo, Y., Ishizuka, M.: Extracting Relations in Social Networks from theWeb Using Similarity Between Collective Contexts. In: Proceeding. 20th IJCAI (2006)Google Scholar
  11. 11.
    Aslandogan, Y.A., Thier, C., Yu, T.C., Zou, J., Rishe, S.: Using Semantic Contents and WordNet in Image Retrieval. In: Proceeding 20th International ACM SIGIR Conference on Research and Development in Information Retrieval, Philadelphia, US, pp. 286–295 (1997)Google Scholar
  12. 12.
    Cox, I.J., et al.: PicHunter: Bayesian relevance feedback for image retrieval. In: Proceeding 13th International Conference on Pattern Recognition, Vienna, Austria, pp. 361–369 (1996)Google Scholar
  13. 13.
    Smith, J.R., Chang, S.F.: VisualSEEk: a fully automated content-based image query system. Proceeding ACM International Conference Multimedia (1995)Google Scholar
  14. 14.
    Rubner, Y., Tomasi, C., Guibas, L.: A metric for distributions with applications to image databases. In: Proceeding of IEEE International Conference on Computer Vision, pp. 59–66 (1998)Google Scholar
  15. 15.
    Canny, J.: A Computational Approach To Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)CrossRefGoogle Scholar
  16. 16.
    Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual perception. IEEE Transactions System Man, and Cybernetics 8(6) (1978)Google Scholar
  17. 17.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. A Wiley-Interscience Publication, Hoboken (2000)zbMATHGoogle Scholar
  18. 18.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: Proceeding 15th International Conference on Machine Learning, pp. 296–304 (1998)Google Scholar
  19. 19.
    Yan, R.: MATLABArsenal; a library for k-nearest neighbor, Software (2006), http://www.informedia.cs.cmu.edu/yanrong/MATLAMATLABAr/MATLABArsenal.htm

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nuraini Jamil
    • 1
  • Sanggil Kang
    • 1
  1. 1.Department of Computer and Information EngineeringInha UniversityIncheonKorea

Personalised recommendations