Detect Digital Image Splicing with Visual Cues

  • Zhenhua Qu
  • Guoping Qiu
  • Jiwu Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5806)

Abstract

Image splicing detection has been considered as one of the most challenging problems in passive image authentication. In this paper, we propose an automatic detection framework to identify a spliced image. Distinguishing from existing methods, the proposed system is based on a human visual system (HVS) model in which visual saliency and fixation are used to guide the feature extraction mechanism. An interesting and important insight of this work is that there is a high correlation between the splicing borders and the first few fixation points predicted by a visual attention model using edge sharpness as visual cues. We exploit this idea to develope a digital image splicing detection system with high performance. We present experimental results which show that the proposed system outperforms the prior arts. An additional advantage offered by the proposed system is that it provides a convenient way of localizing the splicing boundaries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farid, H.: Detecting digital forgeries using bispectral analysis. Technical Report AIM-1657, AI Lab, MIT (1999)Google Scholar
  2. 2.
    Ng, T.T., Chang, S.F., Sun, Q.B.: Blind detection of photomontage using higher order statistics. In: ISCAS, vol. 5, pp. V688–V691 (2004)Google Scholar
  3. 3.
    Fu, D.D., Shi, Y.Q., Su, W.: Detection of image splicing based on hilbert-huang transform and moments of characteristic functions with wavelet decomposition. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 177–187. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Sutcu, Y., Coskun, B., Sencar, H.T., Memon, N.: Tamper detection based on regularity of wavelet transform coefficients. In: Proc. of IEEE ICIP 2007, vol. 1-7, pp. 397–400 (2007)Google Scholar
  5. 5.
    Chen, W., Shi, Y.Q., Su, W.: Image splicing detection using 2-d phase congruency and statistical moments of characteristic function. In: Proc. of SPIE Security, Steganography, and Watermarking of Multimedia Contents IX, vol. 6505 (2007), 65050R Google Scholar
  6. 6.
    Lin, Z.C., Wang, R.R., Tang, X.O., Shum, H.Y.: Detecting doctored images using camera response normality and consistency. In: Proc. of IEEE CVPR 2005, vol. 1, pp. 1087–1092 (2005)Google Scholar
  7. 7.
    Hsu, Y.F., Chang, S.F.: Image splicing detection using camera response function consistency and automatic segmentation. In: Proc. of IEEE ICME 2007, pp. 28–31 (2007)Google Scholar
  8. 8.
    Wang, B., Sun, L.L., Kong, X.W., You, X.G.: Image forensics technology using abnormity of local hue for blur detection. Acta Electronica Sinica 34, 2451–2454 (2006)Google Scholar
  9. 9.
    Johnson, M.K., Farid, H.: Exposing digital forgeries in complex lighting environments. IEEE Trans. IFS 2(3), 450–461 (2007)Google Scholar
  10. 10.
    Johnson, M.K., Farid, H.: Exposing digital forgeries through chromatic aberration. In: ACM MM and Sec 2006, vol. 2006, pp. 48–55 (2006)Google Scholar
  11. 11.
    Chen, M., Fridrich, J., Lukáš, J., Goljan, M.: Imaging sensor noise as digital X-ray for revealing forgeries. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 342–358. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Popescu, A.C., Farid, H.: Exposing digital forgeries in color filter array interpolated images. IEEE Trans. SP 53(10 II), 3948–3959 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Swaminathan, A., Wu, M., Liu, K.J.R.: Optimization of input pattern for semi non-intrusive component forensics of digital cameras. In: IEEE ICASSP, vol. 2, p. 8 (2007)Google Scholar
  14. 14.
    He, J.F., Lin, Z.C., Wang, L.F., Tang, X.O.: Detecting doctored jpeg images via dct coefficient analysis. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 423–435. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE TPAMI 29(3), 411–426 (2007)CrossRefGoogle Scholar
  16. 16.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. PAMI 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  17. 17.
    Rybak, I.A., Gusakova, V.I., Golovan, A.V., Podladchikova, L.N., Shevtsova, N.A.: A model of attention-guided visual perception and recognition. Vision Research 38(15-16), 2387–2400 (1998)CrossRefGoogle Scholar
  18. 18.
    Hou, X.D., Zhang, L.Q.: Saliency detection: A spectral residual approach. In: Proc. of IEEE CVPR 2007, pp. 1–8 (2007)Google Scholar
  19. 19.
    Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision Research 45(2), 205–231 (2005)CrossRefGoogle Scholar
  20. 20.
    Heisele, B., Serre, T., Pontil, M., Poggio, T.: Component-based face detection. In: IEEE CVPR 2001, vol. 1, pp. I657–I662 (2001)Google Scholar
  21. 21.
    Chang, C.C., Lin, C.J.: LIBSVM:a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Zhenhua Qu
    • 1
  • Guoping Qiu
    • 2
  • Jiwu Huang
    • 1
  1. 1.School of Information Science and TechnologySun Yat-Sen UniversityChina
  2. 2.School of Computer ScienceUniversity of NottinghamUK

Personalised recommendations