Skip to main content

A Framework for Designing a Fuzzy Rule-Based Classifier

  • Conference paper
Algorithmic Decision Theory (ADT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5783))

Included in the following conference series:

  • 1046 Accesses

Abstract

This paper is concerned with a general framework for designing a fuzzy rule-based classifier. Structure and parameters of the classifier are evolved through a two-stage genetic search. The classifier structure is constrained by a tree created using the evolving SOM tree algorithm. Salient input variables are specific for each fuzzy rule and are found during the genetic search process. It is shown through computer simulations of four real world problems that a large number of rules and input variables can be eliminated from the model without deteriorating the classification accuracy.

We acknowledge the support from the agency for international science and technology development programmes in Lithuania (COST IC0602).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jang, J.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Systems Man Cybernetics 23, 665–685 (1993)

    Article  Google Scholar 

  2. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. Neural Networks 3(5), 698–713 (1992)

    Article  Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  Google Scholar 

  5. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1461–1480 (1990)

    Article  Google Scholar 

  6. Chen, M.Y., Linkens, D.A.: A systematic neuro-fuzzy modeling framework with application to material property prediction. IEEE Trans. Systems Man, Cybernetics, Part B 31(5), 781–790 (2001)

    Article  Google Scholar 

  7. Zhou, E., Khotanzad, A.: Fuzzy classifier design using genetic algorithms. Pattern Recognition 40(12), 3401–3414 (2007)

    Article  Google Scholar 

  8. Kasabov, N.: Evolving fuzzy neural networks for supervised/unsupervised on-line, knowledge-based learning. IEEE Trans. Systems, Man and Cybernetics 31(6), 902–918 (2001)

    Article  Google Scholar 

  9. Minku, F.L., Ludermir, T.B.: Clustering and co-evolution to construct network ensembles: An experimental study. Neural Networks 21, 1363–1379 (2008)

    Article  Google Scholar 

  10. Abonyi, J., Roubos, J.A., Szeifert, F.: Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. International Journal of Approximate Reasoning 32(1), 1–21 (2003)

    Article  Google Scholar 

  11. Pulkkinen, P., Koivisto, H.: Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods. Applied Sof Computing 7, 520–533 (2007)

    Article  Google Scholar 

  12. Castellano, G., Castiello, C., Fanelli, A.M., Mencar, C.: Knowledge discovery by a neuro-fuzzy medeling framework. Fuzzy Sets and Systems 149, 187–207 (2005)

    Article  MathSciNet  Google Scholar 

  13. Verikas, A., Bacauskiene, M.: Feature selection with neural networks. Pattern Recognition Letters 23(11), 1323–1335 (2002)

    Article  Google Scholar 

  14. Roubos, J.A., Setnes, M., Abonyi, J.: Learning fuzzy classification rules from labeled data. Information Sciences 150, 77–93 (2003)

    Article  MathSciNet  Google Scholar 

  15. Nauck, D., Kruse, R.: Obtaining interpretable fuzzy classification rules from medical data. Artificial Intelligence in Medicine 16(2), 149–169 (1999)

    Article  Google Scholar 

  16. Nozaki, K., Ishibuchi, H., Tanaka, H.: Adaptive fuzzy rule-based classification systems. IEEE Trans. Fuzzy Systems 4(3), 238–250 (1996)

    Article  Google Scholar 

  17. Ozyer, T., Alhajj, R., Barker, K.: Intrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening. Journal of Network and Computer Applications 30(1), 99–113 (2007)

    Article  Google Scholar 

  18. Er, M.J., Zhou, Y.: Automatic generation of fuzzy inference systems via unsupervised learning. Neural Networks 21(10), 1556–1566 (2008)

    Article  Google Scholar 

  19. Nakashima, T., Schaefer, G., Yokota, Y., Ishibuchi, H.: A weighted fuzzy classifier and its application to image processing tasks. Fuzzy Sets and Systems 158, 284–294 (2007)

    Article  MathSciNet  Google Scholar 

  20. Ishibuchi, H., Nojima, Y.: Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. International Journal of Approximate Reasoning 44(1), 4–31 (2007)

    Article  MathSciNet  Google Scholar 

  21. Chang, P.C., Liao, T.W.: Combining som and fuzzy rule base for flow time prediction in semiconductor manufacturing factory. Applied Soft Computing 6, 198–206 (2006)

    Article  Google Scholar 

  22. Mohamadi, H., Habibi, J., Abadeh, M.S., Saadi, H.: Data mining with a simulated annealing based fuzzy classification system. Pattern Recognition 41(5), 1824–1833 (2008)

    Article  Google Scholar 

  23. Lowe, D.G.: Similarity metric learning for a variable-kernel classifier. Neural Computation 7, 72–85 (1995)

    Article  Google Scholar 

  24. Chang, C.L.: Finding prototypes for nearest neighbour classifiers. IEEE Trans. Computers 23, 1179–1184 (1974)

    Article  Google Scholar 

  25. Verikas, A., Bacauskiene, M., Malmqvist, K.: Learning an adaptive dissimilarity measure for nearest neighbour classification. Neural Computing & Applications 11(3-4), 203–209 (2003)

    Article  Google Scholar 

  26. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–12 (1975)

    Article  Google Scholar 

  27. Pakkanen, J., Iivarinen, J., Oja, E.: The evolving tree—A novel self-organizing network for data analysis. Neural Processing Letters 20, 199–211 (2004)

    Article  Google Scholar 

  28. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Berlin (2001)

    Book  Google Scholar 

  29. Guzaitis, J., Verikas, A.: An efficient technique to detect visual defects in particleboards. Informatica 19(3), 363–376 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guzaitis, J., Verikas, A., Gelzinis, A., Bacauskiene, M. (2009). A Framework for Designing a Fuzzy Rule-Based Classifier. In: Rossi, F., Tsoukias, A. (eds) Algorithmic Decision Theory. ADT 2009. Lecture Notes in Computer Science(), vol 5783. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04428-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04428-1_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04427-4

  • Online ISBN: 978-3-642-04428-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics