A Web Recommender System for Recommending, Predicting and Personalizing Music Playlists

  • Zeina Chedrawy
  • Syed Sibte Raza Abidi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5802)


In this paper, we present a Web recommender system for recommending, predicting and personalizing music playlists based on a user model. We have developed a hybrid similarity matching method that combines collaborative filtering with ontology-based semantic distance measurements. We dynamically generate a personalized music playlist, from a selection of recommended playlists, which comprises the most relevant tracks to the user. Our Web recommender system features three functionalities: (1) predict the likability of a user towards a specific music playlist, (2) recommend a set of music playlists, and (3) compose a new personalized music playlist. Our experimental results will show the efficacy of our hybrid similarity matching approach and the information personalization method.


Web personalization Web recommender systems music recommendation semantic similarity matching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Billsus, D., Pazzani, M., Chen, J.: A Learning Agent for Wireless News Access. In: Proc. of the Intl. Conf. on Intelligent User Interfaces, pp. 33–36 (2002)Google Scholar
  2. 2.
    Cano, P., Koppenberger, M., Wack, N.: An industrial-Strength content-based Music Recommendation System. In: Proc. 28th Intl. ACM SIGIR Conf. on Research and Development in Information Retrieval, Salvador, Brazil (2005)Google Scholar
  3. 3.
    Shani, G., Chickering, M., Meek, C.: Mining Recommendations from the Web. In: Proceedings of the 2nd Intl. Recommender Systems Conference, RecSys (2008)Google Scholar
  4. 4.
    Debnath, S., Ganguly, N., Mitra, P.: Feature weighting in content based recommendation system using social network analysis. In: Proc. 17th Intl. Conf. on World Wide Web, Beijing, China, pp. 1041–1042 (2008)Google Scholar
  5. 5.
    Katakis, I., Tsoumakas, G., Banos, E., Bassiliades, N., Vlahavas, J.: An adaptive personalized news dissemination system. Journal of Intelligent Information Systems 32, 191–212 (2009)CrossRefGoogle Scholar
  6. 6.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-Based Collaborative Filtering Recommendation Algorithms. In: Proc. of the 10th Intl. WWW Conference (2001)Google Scholar
  7. 7.
    Hau, J., Lee, W., Darlington, J.: A Semantic Similarity Measure for Semantic Web Services. In: Web Service Semantics: Towards Dynamic Business Integration (2005)Google Scholar
  8. 8.
    Resnick, P., et al.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proc. of ACM Conf. on Computer Supported Cooperative Work, pp. 175–186. Chapel Hill, NC (1994)Google Scholar
  9. 9.
    Celma, O., Ramrez, M.H.P.: Foafing the music: A Music Recommendation System Based on RSS Feeds and User Preferences. In: Proc. 6th Intl. Conf. on Music Information Retrieval (2005)Google Scholar
  10. 10.
    Cotter, P., Smyth, B.: PTV: Intelligent Personalized TV Guides. In: Proc. 12th Conf. Innovative Applications of Artificial Intelligence, pp. 957–964. MIT Press, Cambridge (2000)Google Scholar
  11. 11.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of Recommendation Algorithms for e-commerce. In: 2nd ACM conf. on Electronic Commerce, pp. 158–167 (2000)Google Scholar
  12. 12.
    Abidi, S.S.R.: Designing Adaptive Hypermedia for Internet Portals: A Personalization Strategy Featuring Case Base Reasoning With Compositional Adaptation. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Abidi, S.S.R.: Intelligent Information Personalization; From Issues to Strategies. In: Germanakos, P. (ed.) Intelligent User Interfaces: Adaptation and Personalization Systems and Technologies. IGI Global Press (2008)Google Scholar
  14. 14.
    Mobasher, B., Jin, X., Zhou, W.: Semantically Enhanced Collaborative Filtering on the Web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Spivack, N.: The Third-Generation Web is Coming,
  16. 16.
    Schafer, J., Frankowski, D., Herlocker, J., Sen, S.: Collaborative Filtering Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Zeina Chedrawy
    • 1
  • Syed Sibte Raza Abidi
    • 1
  1. 1.Faculty of Computer ScienceDalhousie UniversityHalifaxCanada

Personalised recommendations